np.argmax()的使用

本文详细介绍了np.argmax()在处理一维、二维甚至三维向量时的应用,如何根据索引获取最大值的下标。对于一维向量,它返回最大值的索引;在二维向量中,通过axis参数可以按列或按行查找最大值的索引,例如axis=0返回列的最大值索引,axis=1返回行的最大值索引。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.一维向量

会根据索引(0开始),得到最大值的索引下标

import numpy as np
a=np.array([1,2,3,4,5])
print(np.argmax(a)) # 4 

2.二维向量

axis=0 按列开始找最大值,下述例子中,

max{1,6,11}=11 max{2,7,12}=12... max{5,10,15}=11

所以按照列开始后 输出的是[2 2 2 2 2](索引0开始)

axis=1 按行开始找最大值,同理

argmax(a):寻找最大值的索引下标

import numpy as np

a=np.array([[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15]])
print(a.shape)# (3, 5)
print(np.argmax(a,axis=0),np.argmax(a,axis=1),np.argmax(a))# [2 2 2 2 2] [4 4 4] 14

3.三维向量

import numpy as np

a=np.array([
              [
                  [1, 5, 5],
                  [9, -6, 2],
                  [-3, 7, -9]
              ],

              [
                  [-1, 7, -5],
                  [9, 6, 2],
                  [3, 7, 9]
              ],
            [
                  [21, 6, -5],
                  [9, 36, 2],
                  [3, 7, 79]
              ]
            ])

print(a.shape)# (3, 3, 3)
print(np.argmax(a)) # 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值