- 博客(6403)
- 收藏
- 关注
原创 基于YOLOv8/v7/v6/v5的田间杂草检测系统:从算法原理到工程实现
杂草是农业生产中的主要生物胁迫之一,与作物竞争水分、养分和阳光,导致作物减产高达34%。传统除草方法包括机械除草和化学除草,但都存在效率低下、环境污染或作物损伤等问题。随着计算机视觉和深度学习技术的发展,基于视觉的智能杂草检测系统为精准农业提供了新的解决方案。YOLO(You Only Look Once)系列算法作为单阶段目标检测的代表,以其出色的速度-精度平衡特性,非常适合田间杂草检测任务。从YOLOv5到最新的YOLOv8,每一代都在精度和效率上有所提升,为农业应用提供了可靠的技术基础。
2025-09-10 11:45:40
350
原创 基于YOLOv8/v7/v6/v5的日常场景人脸检测系统:原理、实现与深度解析
本文深入探讨了基于YOLO系列目标检测算法(特别是YOLOv8)的日常场景人脸检测系统的完整实现过程。内容涵盖从算法原理、数据集准备、模型训练到最终构建一个具备完整用户界面(UI)的可交互系统的全链路细节。我们将详细比较YOLOv5、YOLOv6、YOLOv7和YOLOv8在人脸检测任务上的性能差异,并提供完整的Python代码实现,包括模型预测、训练以及使用Gradio构建的友好Web界面。
2025-09-10 11:44:27
277
原创 基于YOLOv8/v7/v6/v5的危险物品检测系统:技术详解与实现
刀具(knife)枪支(gun)易燃物品(flammable)爆炸物(explosive)其他危险物品(other)数据集共包含12,500张图像,其中训练集10,000张,验证集1,500张,测试集1,000张。所有图像均经过人工标注,确保标注质量。
2025-09-10 11:43:53
253
原创 基于YOLOv8/v7/v6/v5的水下目标检测系统:技术详解与实现
深度学习技术,特别是YOLO系列算法,为应对这些挑战提供了有效的解决方案。YOLO(You Only Look Once)系列作为单阶段目标检测算法的代表,以其高精度和实时性在水下目标检测中展现出巨大潜力。水下目标检测是海洋探索、资源开发、水下作业和安全监控等领域的核心技术。
2025-09-10 11:43:23
204
原创 基于YOLOv8/v7/v6/v5的车型识别与计数系统:深度学习技术详解与实现
本文详细介绍了基于YOLOv8的车型识别与计数系统的完整实现流程,从算法原理、数据准备、模型训练到最终的推理计数应用。项目总结技术选型: YOLOv8凭借其出色的精度-速度平衡和无锚点等先进设计,是本项目的理想选择。完整性: 提供了从零开始构建项目的全部代码,包括训练和推理,并加入了实用的区域计数功能。可扩展性: 代码结构清晰,易于修改和扩展,例如添加更复杂的多区域计数、越线计数、车速估计等功能。实用性: 系统可直接应用于真实的智能交通场景,如路口车流量统计、停车场空位检测等。未来展望。
2025-09-10 11:42:52
235
原创 基于YOLOv8/v7/v6/v5的暴力行为检测系统:从数据准备到实时应用
随着深度学习技术的发展,尤其是基于卷积神经网络(CNN)的目标检测算法的出现,暴力行为检测的准确率和实时性得到了显著提升。YOLOv4由Alexey Bochkovskiy等人于2020年提出,集成了当时多种先进的检测技巧,包括CSPDarknet53主干网络、PANet路径聚合网络、SAM空间注意力模块等,在速度和精度上都达到了新的高度。YOLOv8是Ultralytics公司最新推出的版本,采用了新的骨干网络和颈部设计,引入了anchor-free检测头和损失函数,在多个基准测试中达到了最先进的性能。
2025-09-10 11:42:12
233
原创 基于YOLOv8/v7/v6/v5的木材表面缺陷检测系统:技术详解与实现
本文详细介绍了一种基于深度学习的木材表面缺陷检测系统,采用YOLOv8作为核心检测算法,同时兼容YOLOv7、YOLOv6和YOLOv5进行性能对比。该系统能够高效准确地检测木材表面的裂纹、节疤、虫眼等多种缺陷类型。文章详细阐述了算法原理、数据集构建、模型训练过程以及基于PyQt5开发的用户界面。实验结果表明,本系统在木材缺陷检测任务上达到了较高的准确率和实时性能,[email protected]达到0.92以上,为木材工业质量控制提供了有效的自动化解决方案。关键词:深度学习;YOLO;木材缺陷检测;计算机视觉;PyQt5。
2025-09-10 11:41:42
296
原创 基于YOLOv8/v7/v6/v5的智能零售柜商品识别系统:从原理到实现
随着新零售概念的兴起,无人零售柜、智能结算台等应用场景对商品识别技术提出了极高的要求。传统的识别方法如条码扫描在效率和用户体验上存在瓶颈,而基于计算机视觉的深度学习技术,特别是目标检测算法,为解决这一问题提供了强大的技术支撑。本文将深入探讨如何利用YOLO(You Only Look Once)系列目标检测算法(特别是最新的YOLOv8),构建一个高效、准确的零售柜商品识别系统。
2025-09-10 11:41:11
589
原创 基于YOLOv8/v7/v6/v5的条形码与二维码检测系统:技术详解与代码实现
YOLOv1:开创性地将目标检测视为回归问题,实现了端到端的训练和预测YOLOv2:引入锚框(anchor boxes)机制和批量归一化,提高了召回率和定位精度YOLOv3:采用多尺度预测和Darknet-53主干网络,显著提升了对小目标的检测能力YOLOv4:引入Mosaic数据增强、CIOU损失函数等技巧,在速度和精度间取得更好平衡YOLOv5:采用PyTorch框架实现,提供了更友好的用户接口和更快的训练速度YOLOv6:由美团团队开发,专注于工业应用,在精度和速度方面有进一步优化。
2025-09-10 11:40:36
328
原创 基于YOLOv8/v7/v6/v5的商品识别系统:技术详解与实现
随着计算机视觉技术的快速发展,基于深度学习的商品识别系统在零售、仓储管理和智能购物等领域展现出巨大潜力。本文将深入探讨如何使用YOLO系列算法(特别是YOLOv8)实现高效准确的商品识别系统,并提供完整的实现代码和训练数据集。文章首先介绍了商品识别的背景和意义,然后详细阐述了YOLOv8的算法原理及其在商品识别任务中的优势。接着,我们提供了从数据准备、模型训练到系统实现的完整流程,并展示了基于PyQt5设计的用户界面。
2025-09-10 11:40:05
342
原创 基于YOLOv8/v7/v6/v5的遥感图像目标检测系统:从原理到实现
DOTA:大规模航空图像目标检测数据集,包含15个类别,2806张图像DIOR:包含20个物体类别,23463张图像和190288个实例:10个类别,800张图像,包含正负样本HRSC2016:船舶检测专用数据集,包含1061张图像。
2025-09-10 11:39:30
340
原创 基于YOLOv8/v7/v6/v5的钢材表面缺陷检测系统:技术详解与实现
钢材表面缺陷检测是钢铁制造行业中至关重要的质量控制环节。本文详细介绍了一种基于深度学习的钢材表面缺陷检测系统,采用YOLOv8作为核心检测算法,并兼容YOLOv7、YOLOv6和YOLOv5模型。系统实现了高效、准确的钢材表面缺陷检测,并提供了完整的用户界面(UI)设计。文章将从技术背景、算法原理、数据集处理、模型训练、系统实现以及性能评估等方面进行全面阐述,并提供完整的代码实现,为相关领域的研究者和开发者提供参考。裂纹(Crazing)夹杂(Inclusion)斑块(Patches)
2025-09-10 11:38:56
292
原创 基于YOLOv8/v7/v6/v5的个人防具检测系统:从数据准备到部署实现
近年来,基于深度学习的目标检测算法取得了显著进展。从早期的两阶段检测器(如R-CNN系列)到单阶段检测器(如YOLO、SSD系列),目标检测的精度和速度都得到了大幅提升。YOLO(You Only Look Once)系列算法作为单阶段检测器的代表,因其出色的实时性能和较高的检测精度,成为了工业界和学术界的研究热点。YOLOv5、YOLOv6、YOLOv7和最新的YOLOv8在之前版本的基础上,通过改进网络结构、优化损失函数和引入新的训练策略,进一步提升了检测性能。
2025-09-10 11:38:24
503
原创 基于YOLOv8/v7/v6/v5的铁轨缺陷检测系统:从原理到实践
铁轨作为铁路运输系统的基础设施,其安全状况直接关系到整个铁路运输系统的运行安全。随着我国铁路网络的快速扩张和列车运行速度的不断提高,铁轨缺陷检测变得越来越重要。传统的铁轨检测主要依靠人工巡检或简单的机械装置,这些方法效率低下、容易漏检,且受天气和光线条件影响较大。近年来,随着计算机视觉和深度学习技术的快速发展,基于视觉的自动缺陷检测系统已成为工业检测领域的研究热点。特别是YOLO(You Only Look Once)系列目标检测算法,以其高精度和实时性的优势,在各类工业检测任务中表现出色。
2025-09-10 11:37:54
267
原创 基于YOLOv8/v7/v6/v5的肿瘤图像检测系统:从算法原理到UI实现
系统集成了用户友好的界面,支持多种功能,包括图像加载、肿瘤检测、结果可视化和数据导出。本文将系统介绍如何构建一个完整的基于YOLO算法的肿瘤图像检测系统,包括算法原理、数据集处理、模型训练以及用户界面开发。:重写了网络架构,引入了更高效的RepVGG风格主干网络和更简洁的检测头设计,在精度和速度之间取得了更好平衡。:提出了扩展高效层聚合网络(E-ELAN)和复合模型缩放方法,在多个基准测试中达到了最先进的性能。:最新版本引入了无锚框设计、新的骨干网络和损失函数,进一步提升了检测精度和训练稳定性。
2025-09-10 11:37:22
465
原创 基于YOLOv8/v7/v6/v5的金属锈蚀检测系统:从原理到实现
本文深入探讨了基于YOLO系列目标检测算法(特别是YOLOv8)的金属锈蚀检测系统。文章涵盖了从数据集准备、模型训练到最终构建完整Web界面的全过程。我们详细比较了YOLOv5、YOLOv6、YOLOv7和YOLOv8在锈蚀检测任务上的性能,并提供了完整的代码实现,包括基于PyTorch的训练代码和基于Streamlit的Web应用界面。本系统旨在为工业检测、设备维护等领域提供一个高效、准确的自动化锈蚀检测解决方案。
2025-09-10 11:36:58
464
原创 基于YOLOv8/v7/v6/v5的扑克牌识别系统:技术详解与代码实现
目标检测是计算机视觉领域的核心任务之一,旨在识别图像中特定目标的位置和类别。与图像分类任务不同,目标检测不仅需要判断图像中存在哪些物体,还需要确定这些物体的位置信息。两阶段检测器:首先生成候选区域,然后对每个候选区域进行分类和回归。代表算法有R-CNN、Fast R-CNN和Faster R-CNN等。单阶段检测器:直接在图像上预测目标的边界框和类别概率,无需候选区域生成步骤。YOLO系列、SSD和RetinaNet等属于此类。
2025-09-10 11:35:05
180
原创 基于YOLOv8/v7/v6/v5的商品标签识别系统:技术详解与实现
本文详细介绍了一种基于深度学习的商品标签识别系统,采用YOLOv8/v7/v6/v5目标检测算法,结合直观的用户界面设计。文章首先阐述了商品标签识别的背景与意义,随后详细分析了YOLO系列算法的发展历程及其核心原理。我们提供了完整的数据集准备、模型训练、评估及预测流程,并介绍了基于PyQt设计的用户界面。实验结果表明,该系统在商品标签识别任务上达到了较高的准确率和实时性能。本文还探讨了当前系统面临的挑战和未来可能的改进方向。关键词:商品标签识别,YOLOv8,深度学习,目标检测,PyQt,用户界面。
2025-09-10 11:33:12
281
原创 基于YOLOv8/v7/v6/v5的智能车型识别系统:从原理到实现的全方位解析
多源输入: 支持图片文件(JPG, PNG等)、视频文件(MP4, AVI等)和实时摄像头流作为输入。高精度识别: 基于预训练的YOLOv8模型,能够准确识别图像中的多种常见车型。实时处理: 在GPU加速下,可实现实时视频流的处理与显示。用户友好界面: 基于PySide6(Qt for Python)开发了直观的图形用户界面(GUI),方便用户交互。结果可视化与导出: 实时显示识别结果(边界框、类别、置信度),并支持将识别结果(图片或视频)保存到本地。
2025-09-10 11:32:42
368
原创 基于YOLOv8/v7/v6/v5的机场航拍小目标检测系统:从原理到实现
随着航空产业的飞速发展和无人机技术的普及,机场区域的航空安全面临着前所未有的挑战。鸟类撞击、无人机非法入侵、地面车辆与人员的不当行为等“低慢小”目标对飞行安全构成了严重威胁。传统的监控手段受限于视野、分辨率和人力,难以实现全天候、高精度的实时监测。近年来,深度学习技术的突破,特别是目标检测领域的飞速发展,为解决这一难题提供了新的技术路径。本文将深入探讨基于YOLO(You Only Look Once)系列算法(尤其是最新的YOLOv8)的机场航拍小目标检测系统。
2025-09-10 11:32:09
373
原创 基于YOLOv8/v7/v6/v5的自动驾驶目标检测系统:从原理到实现
自动驾驶技术是人工智能领域最具挑战性和前景的应用之一,而目标检测作为自动驾驶系统的"眼睛",起着至关重要的作用。随着深度学习技术的发展,YOLO(You Only Look Once)系列算法因其出色的速度和精度平衡,成为了自动驾驶目标检测的首选方案之一。本文将详细介绍基于YOLOv8/v7/v6/v5的自动驾驶目标检测系统的完整实现,包括算法原理、数据集处理、模型训练、系统实现以及一个完整的用户界面。
2025-09-09 10:39:40
354
原创 基于YOLOv8/v7/v6/v5的输电线路设备检测系统:从算法原理到UI实现
从YOLOv1到最新的YOLOv8,算法在精度和速度上不断优化,非常适合输电线路设备检测这类需要实时处理的应用场景。实验结果表明,我们的系统能够有效检测输电线路中的各种设备,具有较高的精度和实时性。这些方法在简单场景下有一定效果,但对于复杂背景和多变条件下的检测效果有限。我们在自建的输电线路设备数据集上进行了实验,数据集包含5000张图像,按照8:1:1的比例划分为训练集、验证集和测试集。使用LabelImg工具对图像中的设备进行标注,生成PASCAL VOC格式的XML文件,包含目标的类别和边界框信息。
2025-09-09 10:34:04
247
原创 基于YOLOv8/v7/v6/v5的生活垃圾智能检测与分类系统:从算法原理到UI实现的完整指南
构建了完整的数据预处理、模型训练和评估 pipeline实现了多种YOLO版本的训练和推理代码开发了用户友好的Web界面,方便用户交互进行了全面的实验评估和性能分析提供了模型优化和部署的方案实验结果表明,我们的系统在垃圾检测任务上达到了较高的精度,YOLOv8m模型实现了76.2%的[email protected],同时保持了较快的推理速度。
2025-09-09 10:33:33
253
原创 基于YOLOv8/v7/v6/v5的智能监考系统:创新技术与完整实现指南
YOLO是一种单阶段目标检测算法,其核心思想是将目标检测任务转化为回归问题,直接在单个网络中预测边界框和类别概率。与两阶段检测器(如R-CNN系列)相比,YOLO具有更快的检测速度,适合实时应用场景。YOLOv5是Ultralytics公司于2020年推出的实现,虽然不是官方YOLO版本,但因其优秀的工程化和易用性广受欢迎。它采用了CSPDarknet作为主干网络,并引入了自适应锚框计算和马赛克数据增强等创新技术。YOLOv6。
2025-09-09 10:32:53
392
原创 基于YOLOv8/v7/v6/v5的机械器件识别系统:从数据准备到部署实现
目标检测是计算机视觉领域的核心任务之一,其目标是在图像或视频中识别并定位特定对象。与图像分类只判断整张图像的类别不同,目标检测需要同时完成对象的识别和定位两个任务,通常通过边界框(bounding box)来表示对象的位置。传统目标检测方法主要基于手工设计的特征(如HOG、SIFT等)和分类器(如SVM),但这些方法在复杂场景下的泛化能力有限。随着深度学习的发展,基于卷积神经网络的目标检测方法逐渐成为主流,主要分为两阶段检测器(如R-CNN系列)和单阶段检测器(如YOLO、SSD)。
2025-09-09 10:32:29
284
原创 基于YOLOv8/v7/v6/v5的血细胞检测与计数系统:深度学习技术助力医学影像分析
本文使用的是公开的血细胞检测数据集BCCD(Blood Cell Count and Detection Dataset),包含364张图像,标注了红细胞(RBC)、白细胞(WBC)和血小板(Platelets)三类细胞。数据集结构如下:textBCCD/├── train/├── valid/└── test/
2025-09-09 10:31:08
343
原创 基于YOLOv8/v7/v6/v5的远距离停车位检测系统:技术详解与实现
本文详细介绍了一种基于深度学习的远距离停车位检测系统,采用YOLOv8/v7/v6/v5目标检测算法实现高效准确的停车位识别。文章首先分析了停车位检测的技术挑战,然后详细阐述了YOLO系列算法的原理及其在停车位检测中的应用,包括数据预处理、模型训练、性能评估等关键环节。我们开发了一个直观的UI界面,支持图像、视频和实时摄像头流中的停车位检测,并提供了完整的Python代码实现和训练数据集。实验结果表明,本系统在准确性和实时性方面均表现出色,[email protected]达到0.92以上,能够满足实际应用需求。关键词。
2025-09-09 10:30:36
412
原创 基于深度学习的PCB电子元件自动检测与识别系统:YOLOv5/v7/v8/v10全系列实现与深度解析
印刷电路板(PCB)是现代电子设备的核心组成部分,其元件的精确安装与焊接质量直接决定了产品的性能与可靠性。传统的人工目视检测(MVI)方法效率低下、主观性强且易疲劳,难以满足现代制造业对高精度和高效率的需求。本文深入探讨了基于深度学习的目标检测算法YOLO(You Only Look Once)系列(特别是YOLOv5, YOLOv7, YOLOv8, YOLOv10)在PCB电子元件自动识别与缺陷检测中的应用。我们详细阐述了从数据集准备、模型训练、性能评估到最终集成到用户友好型UI界面的完整技术流程。
2025-09-09 10:30:04
359
原创 基于YOLO系列算法的手势识别系统:从YOLOv5到YOLOv10的完整实现
手势识别作为人机交互领域的重要研究方向,近年来随着深度学习技术的快速发展取得了显著进展。本文将详细介绍基于YOLO系列算法(YOLOv5/v7/v8/v10)的手势识别系统的完整实现过程,包括算法原理、数据集处理、模型训练、性能评估以及一个直观的UI界面设计。我们将提供完整的代码实现,从数据预处理到模型部署的全流程,帮助读者全面了解并实践手势识别技术。关键词:手势识别、YOLO算法、深度学习、计算机视觉、人机交互。
2025-09-09 10:27:28
243
原创 基于YOLOv8/v7/v6/v5的活体人脸检测系统:从原理到实践
纹理分析:利用LBP(局部二值模式)、HOG(方向梯度直方图)等特征提取器分析皮肤纹理运动分析:通过眨眼、嘴部运动、头部旋转等生命特征进行判断反射特性:利用3D结构信息或光线反射差异区分真实人脸与伪造品红外成像:使用近红外或热成像相机捕获活体特有的热信号模式。
2025-09-09 10:26:55
444
原创 基于YOLOv8/v7/v6/v5的障碍物检测系统:从原理到实现
本文详细介绍了基于YOLOv8/v7/v6/v5的障碍物检测系统的设计与实现。我们从YOLO算法的基本原理出发,深入探讨了不同版本YOLO的架构特点和改进,提供了完整的数据集准备、模型训练、系统实现和性能评估方案。通过实验对比,我们发现YOLOv8在精度和速度方面都有显著提升,是当前障碍物检测任务的优秀选择。同时,我们开发的用户界面使得系统更加易用,适合不同技术背景的用户使用。多模态融合:结合雷达、激光雷达等其他传感器数据,提高检测精度和鲁棒性3D检测:扩展至3D障碍物检测,提供更丰富的环境感知能力。
2025-09-09 10:26:27
281
原创 基于YOLO系列算法的布匹缺陷检测系统:从YOLOv5到YOLOv10的完整实现
布匹缺陷检测是纺织行业中至关重要的质量控制环节。传统的人工检测方法效率低下、容易疲劳且主观性强,而基于深度学习的计算机视觉技术为这一问题提供了有效的解决方案。本文将详细介绍基于YOLO(You Only Look Once)系列算法(包括YOLOv5、YOLOv8和最新的YOLOv10)的布匹缺陷检测系统,提供完整的实现代码、UI界面设计以及训练数据集构建方法。通过对比不同版本YOLO算法在布匹缺陷检测任务上的性能表现,为工业实践提供参考依据。纺织行业是全球重要的制造业之一,布匹质量直接影响最终产品的价值和
2025-09-09 10:25:20
461
原创 基于YOLOv8/v7/v6/v5的景区垃圾识别系统:从算法原理到UI实现的全方位解析
目标检测是计算机视觉领域的核心任务之一,旨在识别图像中特定目标的位置和类别。传统目标检测方法主要基于手工设计的特征(如HOG、SIFT等)和分类器(如SVM),但这些方法在复杂场景下的泛化能力有限。随着深度学习的发展,基于卷积神经网络的目标检测算法取得了突破性进展。主要分为两类:两阶段检测算法(如R-CNN系列)和单阶段检测算法(如YOLO、SSD系列)。两阶段算法首先生成候选区域,然后对每个区域进行分类和回归,精度较高但速度较慢;单阶段算法直接在特征图上预测目标边界框和类别,速度更快但精度略低。
2025-09-09 10:24:29
455
原创 基于YOLO系列算法的舰船检测与识别系统:从原理到实现
SeaShips:包含6类舰船,约30,000张图像HRSC2016:高分辨率舰船检测数据集,包含1,000+图像自收集数据:从卫星图像和海上监控视频中提取的舰船图像航空母舰 (aircraft carrier)军舰 (warship)商船 (merchant ship)潜艇 (submarine)巡逻艇 (patrol boat)油轮 (tanker)其他 (other)
2025-09-09 10:23:35
464
原创 基于YOLOv8/v7/v6/v5的教室人员检测系统:从原理到实现的全方位解析
教室人员检测是智慧教育、课堂分析以及安防监控中的关键技术。本文深入探讨了基于深度学习的目标检测算法YOLO(You Only Look Once)系列在教室人员检测任务中的应用。我们将全面回顾从YOLOv5到最新YOLOv10的演进,并提供一个完整的解决方案,包括模型训练、基于PyQt的图形用户界面(GUI)开发,以及系统集成。本文不仅提供了详尽的理论背景,还附带了完整的数据集准备、模型训练代码和基于PySide6的UI实现代码,旨在为研究者和开发者提供一个“开箱即用”的高精度教室人员检测系统。
2025-09-09 10:22:45
486
原创 基于YOLO系列的多目标检测系统:从YOLOv5到YOLOv10的全面解析与实践
目标检测作为计算机视觉领域的核心任务之一,在自动驾驶、安防监控、医疗影像分析等众多应用中发挥着至关重要的作用。本文将深入探讨基于YOLO(You Only Look Once)系列算法的多目标检测系统,涵盖从YOLOv5到最新YOLOv10的完整技术演进,并提供完整的系统实现方案,包括UI界面设计、数据集处理、模型训练及推理部署的全流程。文章将详细分析各版本YOLO的架构特点、性能对比以及实际应用场景,并附上完整的代码实现,帮助读者全面理解和实践基于深度学习的目标检测技术。
2025-09-09 10:22:10
306
原创 基于YOLO系列的血细胞检测系统:从原理到实现
红细胞(RBC)白细胞(WBC)血小板(Platelets)数据集可以从多个公开来源获取,如BCCD数据集、LISC数据库等,或者通过医疗机构合作获取已标注的临床数据。
2025-09-09 10:21:40
263
原创 基于YOLOv8/v7/v6/v5的手写数字与符号识别系统:从原理到UI实现的完整指南
手写数字与符号识别是计算机视觉领域的经典问题,在文档数字化、自动评分、银行支票处理等领域有着广泛的应用。传统的图像处理方法在此任务上往往受限于光照、书写风格等因素,而深度学习,特别是基于YOLO(You Only Look Once)系列的目标检测算法,以其强大的特征提取和端到端的识别能力,为该问题提供了全新的解决方案。本文将深入探讨如何利用YOLOv5、YOLOv8乃至最新的YOLOv10构建一个高效、准确的手写数字与符号识别系统。
2025-09-09 10:21:18
400
原创 基于YOLOv8/v7/v6/v5的体育赛事目标检测系统:从算法原理到UI实现
算法模块:支持多种YOLO版本的目标检测数据处理模块:负责图像/视频的预处理和后处理用户界面模块:基于PySide6的现代化UI模型管理模块:管理不同版本的预训练模型。
2025-09-09 10:15:41
337
原创 基于YOLOv8/v7/v6/v5的智能快递包裹检测系统:从算法原理到UI实现
YOLOv1-v3:奠定了YOLO系列的基础设计理念,即单阶段检测和网格划分策略YOLOv4:引入了Bag of Freebies和Bag of Specials等技巧,显著提升性能YOLOv5:采用PyTorch框架,提供了更加用户友好的实现和部署方案YOLOv6/v7:针对工业应用进一步优化,平衡精度与速度YOLOv8:最新版本,引入了anchor-free检测头和更高效的网络结构YOLOv10:2024年最新发布,通过减少冗余计算进一步提升效率用户界面模块。
2025-09-09 10:15:11
456
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人