引言
番茄作为全球广泛种植的果蔬之一,其成熟度的检测对农业生产及供应链管理至关重要。番茄的成熟度决定了其市场价值和食用质量。传统的番茄成熟度判定依赖于人工检查,不仅效率低且容易受到人为因素的影响。而随着深度学习技术的快速发展,基于图像的自动化成熟度检测方法得到了越来越多的关注。特别是R-CNN(Region-based Convolutional Neural Network)作为一种高效的目标检测方法,能够准确地检测番茄在图像中的位置及其成熟度。
本篇博客将详细介绍如何基于R-CNN设计一个番茄成熟度检测系统。我们将使用R-CNN模型从图像中检测番茄,并对其进行分类(例如:青果、成熟、过熟)。此外,系统还将集成一个UI界面,使得用户能够上传番茄图像,实时查看其成熟度。
项目目标
- 数据集准备与标注:准备包含不同成熟度番茄图像的数据集。
- R-CNN模型设计与训练:使用R-CNN进行番茄目标检测与成熟度分类。
- UI界面设计:创建一个简单易用的界面,用户可以上传图像并查看结果。
目录