1. 引言
道路缺陷(如裂缝、坑洞、凹陷等)是交通安全和基础设施维护的重要问题。传统道路缺陷检测方法多依赖人工检查或简单的图像处理技术,但这些方法效率低下且容易受到环境因素的干扰。借助深度学习,特别是目标检测模型(如YOLOv8),可以高效、准确地实现道路缺陷检测。
本文将构建一个基于YOLOv8的道路缺陷检测系统,涵盖数据集准备、模型训练、推理、UI设计与实现,并提供完整代码和详尽教程。
目录
2. 项目概述
2.1 项目目标
- 检测道路缺陷:识别裂缝、坑洞等缺陷,并定位其具体位置。
- 可视化界面:通过UI界面上传道路图片并查看检测结果。
- 实时检测:实现道路缺陷实时检测功能。
2.2 技术栈
- 深度学习框架:YOLOv8(由Ultralytics提供的最新版本,支持快速目标检测)。
- UI框架:基于PyQt5实现人机交互界面。
- 编程语言:Python。</