基于深度学习的道路缺陷检测系统 —— YOLOv8 + UI界面 + 数据集

1. 引言

道路缺陷(如裂缝、坑洞、凹陷等)是交通安全和基础设施维护的重要问题。传统道路缺陷检测方法多依赖人工检查或简单的图像处理技术,但这些方法效率低下且容易受到环境因素的干扰。借助深度学习,特别是目标检测模型(如YOLOv8),可以高效、准确地实现道路缺陷检测。

本文将构建一个基于YOLOv8的道路缺陷检测系统,涵盖数据集准备、模型训练、推理、UI设计与实现,并提供完整代码和详尽教程。


目录

1. 引言

2. 项目概述

2.1 项目目标

2.2 技术栈

3. 数据集准备

3.1 数据集来源

3.2 数据标注

3.3 数据增强

4. YOLOv8模型训练

4.1 环境配置

4.2 数据集配置

4.3 开始训练

5. UI界面设计与实现

5.1 UI设计目标

5.2 UI实现

6. 模型推理与评估

6.1 模型推理

6.2 性能评估

7. 总结与展望

系统特点

未来改进


2. 项目概述

2.1 项目目标

  1. 检测道路缺陷:识别裂缝、坑洞等缺陷,并定位其具体位置。
  2. 可视化界面:通过UI界面上传道路图片并查看检测结果。
  3. 实时检测:实现道路缺陷实时检测功能。

2.2 技术栈

  • 深度学习框架:YOLOv8(由Ultralytics提供的最新版本,支持快速目标检测)。
  • UI框架:基于PyQt5实现人机交互界面。
  • 编程语言:Python。</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值