引言
随着旅游业的快速发展,景区垃圾问题日益严重,如何高效地识别和清理垃圾成为了一个亟待解决的问题。深度学习技术,特别是目标检测算法,为解决这一问题提供了新的思路。YOLO(You Only Look Once)系列算法以其高效、准确的特点在目标检测领域得到了广泛应用。本文将详细介绍如何基于YOLOv11实现景区垃圾识别系统,并提供完整的代码、PySide6界面以及训练代码。
1. YOLOv11简介
YOLOv11是YOLO系列的最新版本,相较于之前的版本,YOLOv11在检测精度和速度上都有了显著提升。YOLOv11采用了更加复杂的网络结构,并结合了多种优化策略,如数据增强、模型剪枝、量化等,使得其在复杂场景下的检测效果更加出色。
1.1 YOLOv11的网络结构
YOLOv11的网络结构主要由以下几个部分组成:
- Backbone:负责提取图像特征,通常采用CSPDarknet53或ResNet等网络结构。
- Neck:负责特征融合,通常采用FPN(Feature Pyramid Network)或PAN(Path Aggregation Network)等结构。
- Head:负责生成最终的检测结果,通常采用Anchor-based或Anchor-free的方法。