基于深度学习YOLOv11的景区垃圾识别系统

引言

随着旅游业的快速发展,景区垃圾问题日益严重,如何高效地识别和清理垃圾成为了一个亟待解决的问题。深度学习技术,特别是目标检测算法,为解决这一问题提供了新的思路。YOLO(You Only Look Once)系列算法以其高效、准确的特点在目标检测领域得到了广泛应用。本文将详细介绍如何基于YOLOv11实现景区垃圾识别系统,并提供完整的代码、PySide6界面以及训练代码。

1. YOLOv11简介

YOLOv11是YOLO系列的最新版本,相较于之前的版本,YOLOv11在检测精度和速度上都有了显著提升。YOLOv11采用了更加复杂的网络结构,并结合了多种优化策略,如数据增强、模型剪枝、量化等,使得其在复杂场景下的检测效果更加出色。

1.1 YOLOv11的网络结构

YOLOv11的网络结构主要由以下几个部分组成:

  • Backbone:负责提取图像特征,通常采用CSPDarknet53或ResNet等网络结构。
  • Neck:负责特征融合,通常采用FPN(Feature Pyramid Network)或PAN(Path Aggregation Network)等结构。
  • Head:负责生成最终的检测结果,通常采用Anchor-based或Anchor-free的方法。

1.2 YOLOv11的优化策略</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值