1. 引言
多目标检测(Multi-Object Detection)是计算机视觉中最重要的任务之一。它要求模型不仅能够识别图像或视频中的对象类别,还要同时定位出每个对象的位置。多目标检测广泛应用于以下领域:
✅ 自动驾驶: 识别车辆、行人、交通信号灯等目标。
✅ 安防监控: 识别异常行为和可疑人物。
✅ 医疗影像: 定位和识别医学图像中的病灶。
✅ 工业质检: 在流水线上检测瑕疵产品。
✅ 无人机监控: 在复杂地形环境中识别不同种类的物体。
在多目标检测领域,YOLO(You Only Look Once)系列模型以其高效、准确的实时检测能力脱颖而出。YOLOv8是YOLO系列的最新版本,相比于前代模型,在精度和速度方面都有显著提升。
本项目基于YOLOv8构建了一个完整的多目标检测系统,涵盖数据集准备、模型训练、实时检测与UI界面展示,最终实现高效的多目标检测。
2. 项目背景
2.1 多目标检测的挑战
多目标检测涉及以下挑战:
- 对象尺寸差异: 目标大小不一致,容易导致小目标检测困难。
- 对象重叠与遮挡: 对象之间可能存