1. 项目背景与研究意义
目标检测技术在智能交通、安防监控、无人驾驶等多个领域得到了广泛应用,特别是在自动驾驶系统中,准确识别并定位车辆类型至关重要。UA-DETRAC(Urban Area - Detection and Tracking)数据集是一个专门为车辆检测和跟踪任务设计的开源数据集,包含了多种车辆类型,如汽车、面包车、大巴和卡车。该数据集为目标检测和多目标追踪任务提供了丰富的数据资源。
本项目使用YOLOv10进行UA-DETRAC数据集的目标检测,并结合PyQt5开发一个图形用户界面(UI),为用户展示实时目标检测效果。YOLOv10作为目标检测领域的先进算法,其高效性和准确性使其成为本项目中进行目标检测的理想选择。
2. UA-DETRAC 数据集概述
2.1 数据集介绍
UA-DETRAC是一个大规模的交通视频数据集,专门用于车辆检测与跟踪任务。该数据集由多个视频片段组成,涵盖了不同的城市环境和交通状况。数据集包含了四种车辆类型:汽车、面包车、大巴和卡车。每个视频片段都提供了目标物体的边界框标注以及多目标跟踪ID。
2.2 目标类别
UA-DETRAC数据集中的目标类别包括:
类别编号 | 类别名 |
---|---|
0 | 汽车 |