在现代工业生产中,随着自动化程度的提高,工业产品的瑕疵检测变得越来越重要。为了确保产品的质量和减少人力成本,基于深度学习的自动化检测方法成为了生产线上的必备工具。YOLO(You Only Look Once)作为一种实时目标检测算法,凭借其快速、高效的特点,已经在工业瑕疵检测中取得了显著的成果。
本文将带领大家从头到尾实现一个工业产品瑕疵检测系统,利用YOLOv10模型,结合UI界面的设计与实现。通过对TIL2019工业产品瑕疵检测数据集的使用,我们将实现一个能够识别并标注产品瑕疵的系统。最终,用户可以通过友好的UI界面,轻松上传图像并查看检测结果。本文的目标是通过完整的代码和步骤,帮助读者掌握从数据预处理、模型训练到UI设计的全过程。
目录
- 引言
- TIL2019数据集介绍
- YOLOv10模型概述
- 数据预处理与标注
- 模型训练与评估
- UI界面设计与实现
- 完整代码实现
1. 引言
在工业制造中,产品瑕疵检测是确保产品质量的关键环节。传统的人工检测方法不仅工作量大