📌 一、项目背景与意义
随着人工智能和深度学习技术的快速发展,目标检测技术在多个领域中得到了广泛应用,特别是在智能交通、智能监控以及自动驾驶等领域。YOLO(You Only Look Once)系列模型以其高效的实时检测能力和精度优势,成为目标检测领域的领导者。YOLOv8作为YOLO系列的最新版本,进一步提升了模型的检测性能,尤其适用于大规模实时检测任务。
Tsinghua-Tencent 100K 数据集是一个专注于交通环境的目标检测数据集,包含了行人、车辆、交通标志等多个类别。该数据集是中国国内用于智能交通领域的一个重要数据集,具有广泛的应用前景。通过YOLOv8训练该数据集,我们可以构建一个高效的目标检测系统,并应用于实际场景中。
本博客将详细介绍如何使用YOLOv8进行Tsinghua-Tencent 100K数据集的目标检测任务,并通过简单的UI界面展示检测结果。本文提供的代码包括从数据集准备、模型训练、到最终的UI展示等所有步骤,旨在帮助读者全面理解如何搭建一个完整的目标检测系统。
📚 二、Tsinghua-Tencent 100K 数据集概述
📖 2.1 数据集介绍
Tsinghua-Tencent 100K数据集由清华大学与腾讯公司联合发布,主要用于智能交通中的目标检测任务。该数据集包含了来自多个监控场景的图像,包含了行人、车辆、交通标志等多个类别。
数据集的主要特点:
- 目标类别