概述
无人机(UAV,Unmanned Aerial Vehicle)作为现代技术的产物,已经在多个领域得到了广泛应用,尤其是在农业监测、环境监控、灾害救援等领域。然而,无人机的目标检测仍然是一个挑战,尤其是在复杂环境下的检测。为了有效推动无人机检测技术的发展,UAV123数据集被提出并广泛应用于无人机目标检测任务中。本文将通过YOLOv10(You Only Look Once)模型来进行无人机目标检测,并搭建一个简单的UI界面,实时展示检测结果。
本文将详细介绍如何利用YOLOv10模型进行无人机目标检测,包括数据预处理、模型训练、评估以及UI界面的搭建,并附带完整代码示例。
UAV123 数据集概述
UAV123数据集是一个专门用于无人机目标检测的数据集,主要用于研究如何通过计算机视觉技术识别和跟踪无人机。数据集的核心特性包括:
- 类别数量:数据集包含1个类别——无人机(UAV)。
- 图像内容:图像来自各种场景,其中包含了多个环境下飞行的无人机,涵盖了不同的飞行角度、环境背景以及光照条件。
- 标注方式:每张图像中包含了无人机的边界框标注,用于训练目标检测模型。
- 应用场景:UAV123数据集广泛用于无人机检测、目标跟踪以及飞行路径预测等研究。
UAV123数据集为