引言
深度学习,尤其是计算机视觉领域的目标检测,近年来取得了显著的进展。YOLO(You Only Look Once)系列目标检测模型,因其高效和精确的特点,广泛应用于各种实时检测任务。尤其是在RGBD(红绿蓝深度)图像处理领域,利用深度信息提高目标检测精度已经成为一种趋势。
Bonn RGBD数据集提供了多种类别的目标,包括人物、桌子、椅子等,是用于研究RGBD数据(即同时包含RGB图像和深度图像)的理想选择。本篇博客将详细介绍如何使用YOLOv5模型和Bonn RGBD数据集进行多类别目标检测。我们将从数据集介绍、数据处理、模型训练到前端UI界面的实现,逐步展示如何完成这一过程。
1. Bonn RGBD数据集概述
1.1 数据集介绍
Bonn RGBD数据集是一个针对目标检测、语义分割和姿势估计等任务的多模态数据集。数据集包含多个场景和类别,包含来自多种设备的RGB图像和深度图像。与传统的RGB图像数据集不同,Bonn RGBD数据集同时提供了图像的深度信息,这对三维物体检测和场景理解非常有用。
数据集提供了10个类别,具体包括:
- 人(Person)
- 桌子(Table)
- 椅子(Chair)
- 沙发(Sofa)
- 电视(TV)
- 书架(Bookshelf)
- 垃圾桶(Trashbin)
- 地毯(Carpet)
- 书(Book)
- 灯(Lamp)</