引言
随着城市化的快速发展,地下管网作为城市基础设施的重要组成部分,承载着水、电、气等多种管线的运行。在地下管网的维护和管理中,传统的人工巡检方式面临着很多挑战,尤其是在管道布局复杂、环境条件恶劣的情况下,人工巡检不仅效率低下,还可能导致漏检或误判。为了解决这一问题,地下管网巡检机器人应运而生,它结合了自动化技术和人工智能技术,能够高效、准确地完成地下管网的巡检任务。
在地下管网巡检机器人的工作中,视觉识别技术至关重要。通过计算机视觉,机器人能够识别管道内部的异常情况,如裂纹、堵塞、腐蚀等,从而为后续的维修工作提供数据支持。本文将深入介绍如何基于YOLOv5目标检测算法,结合UI界面设计,实现一个地下管网巡检机器人系统。该系统将实现对管道内设备、管道状态的自动检测,并通过图像识别帮助机器人进行智能巡检。
系统概述
目标
本系统的核心目标是基于YOLOv5算法,通过视觉检测自动识别地下管网中的各种状态异常,例如管道破损、堵塞、腐蚀等。系统的主要目标包括:
- 管道裂纹检测:通过图像识别识别管道裂纹并实时定位。
- 管道堵塞检测:检测管道是否存在堵塞物。
- 管道腐蚀检测:识别管道的腐蚀区域,为后续的维护提供参考。
- 智能巡检:系统能够自动巡检管道,并提供可视化监控数据。
模块划分
系统分为以下几个模块: