一、引言
随着城市化进程的加快,地下管网的建设和管理显得尤为重要。地下管网系统通常包括供水、排水、电力、通信等多种管道。传统的管网巡检方式主要依赖人工巡查,既费时费力,又容易受到环境因素的影响,导致巡检效率低下且准确性差。为了提升巡检效率并确保管网的安全运行,地下管网巡检机器人应运而生,成为实现智能化管网管理的关键技术之一。
本文将介绍如何基于YOLOv8目标检测模型与PyQt6图形用户界面(GUI),构建一个智能化的地下管网巡检机器人系统。该系统能够实时检测地下管网中的缺陷、障碍物以及其他可能的安全隐患,帮助工作人员更快速地发现问题,提升巡检效率。
二、系统架构与技术选型
2.1 系统架构
本系统的架构主要包括以下几个模块:
- 数据采集与预处理:通过地下管网巡检机器人获取图像数据,对这些图像进行标注并转换为适合YOLOv8训练的格式。
- 模型训练与优化:使用YOLOv8进行目标检测模型的训练,优化模型参数,以提高缺陷检测的准确性。
- 实时检测与分析:部署训练好的模型,进行实时视频流的缺陷检测,及时识别管道中的各种异常。
- 用户界面:基于PyQt6开发GUI,显示管网巡检结果,并提供巡检控制与数据管理功能。
2.2 技术选型
- YOLOv8