摘要
地震灾难中,生命探测是挽救被困人员生命的关键。随着人工智能(AI)技术的飞速发展,深度学习在地震救援中的应用逐渐得到重视。特别是在目标检测与识别方面,YOLO(You Only Look Once)系列算法在实时性和精确度上的表现,使其成为地震救援领域中一项非常有前景的技术。YOLOv8作为YOLO系列的最新版本,能够在保证检测精度的同时,提高运行效率,非常适合用于灾后生命探测工作。
本文将介绍如何基于YOLOv8模型进行地震救援中的生命探测,结合UI界面实现实时检测与展示,最终构建一个完整的生命探测系统。通过使用公开数据集、模型训练、性能优化等手段,本文为开发者提供了一个详细的实现方案,包括完整的代码与具体流程,助力地震救援工作的自动化与智能化。
1. 引言
地震发生时,由于建筑物倒塌、道路阻塞等因素,许多被困人员无法获得及时的救援。传统的救援方法往往依赖于救援人员的搜索,但这种方式效率低且受限于环境条件。近年来,随着计算机视觉与深度学习的进步,自动化的生命探测技术逐渐成为灾后救援的重要工具。通过在灾后现场部署自动化的探测系统,可以在第一时间识别被困人员并定位其位置,从而为救援工作提供重要支持。
YOLOv8作为最新版本的YOLO目标检测模型,具有高效的检测能力和较低的计算资源消耗