🧭 一、项目背景
1.1 背景简介
随着自动驾驶技术的逐步成熟,行人检测(Pedestrian Detection) 作为自动驾驶系统中最核心的安全模块之一,受到了广泛关注。其主要任务是在复杂交通环境中准确检测行人位置,并及时发出避让信号,从而保障道路参与者的生命安全。
传统方法多依赖于 Haar、HOG、SVM 等浅层特征提取手段,已无法满足现代交通系统对于实时性和准确率的高要求。近年,深度学习的飞速发展尤其是 YOLO 系列模型的广泛应用,使得在不同环境下(雨天、夜晚、遮挡)实现高效、实时的行人检测成为可能。
因此,本项目以 YOLOv10 + 自定义UI界面 为核心,构建一个完整的自动驾驶行人检测避让系统,满足如下目标:
- 实时检测:延迟低于 50ms/frame;
- 高精度:支持复杂背景行人识别;
- 交互式控制:内嵌可视化界面控制与显示;
- 可拓展性强:可对接车辆控制系统或ROS平台。
🧠 二、YOLOv10简介
YOLOv10 是 Ultralytics 于 2024 年发布的目标检测架构,相比 YOLOv8/YOLO-NAS,在精度、速度和部署效率方面均有所提升。