概述
随着科技的不断进步,安防系统在公共安全领域扮演着越来越重要的角色,尤其是在对围墙、禁区等关键区域的监控中。传统的安防系统多依赖于人工巡查或视频监控,但随着监控区域的不断扩展,人工监控无法实时反应潜在的安全威胁,且容易发生漏检或误检等问题。基于计算机视觉的入侵检测系统可以实时识别并报警,当有人越过围墙或进入禁区时,系统能够及时发出预警,从而保障安全。
本文将介绍如何利用YOLOv10(You Only Look Once v10)目标检测模型,结合PyQt5开发UI界面,实现围墙或禁区入侵者的检测与预警系统。通过深度学习技术进行物体检测,识别闯入者并进行实时反馈,为安防系统提供更高效的解决方案。
1. 深度学习基础与YOLOv10模型概述
深度学习基础
深度学习是一种基于多层神经网络进行数据学习和特征提取的技术,广泛应用于计算机视觉、语音识别、自然语言处理等领域。特别在计算机视觉领域,卷积神经网络(CNN)已经成为处理图像分类、目标检测等任务的主流技术。
目标检测是计算机视觉中的一项重要任务,目标检测模型不仅能够识别图像中的物体,还能输出这些物体的边界框(bounding box)和类别。YOLO(You Only Look Once)系列模型在目标检测中具有非常高的实时性和准确性,是目前最流行的目标检测算法之一。