1. 引言
乐高积木(Lego bricks)是全球广受欢迎的拼插玩具。随着工业自动化和智能制造的发展,自动识别和分类乐高积木变得愈发重要,尤其在乐高积木生产线、自动拼装、库存管理等场景。
深度学习,尤其是基于卷积神经网络(CNN)的目标检测技术,在图像识别领域表现优异。YOLO(You Only Look Once)系列模型作为端到端的实时目标检测代表之一,具备高效、精确的优点。YOLOv8作为YOLO最新版本,引入了更加高效的结构设计和训练策略,适合工业应用。
本文将结合公开的Brickognize数据集,演示如何基于YOLOv8进行乐高积木的检测与分类,并搭建一个简洁的UI界面,方便演示和测试。
2. 乐高积木分类问题背景与应用价值
乐高积木分类的自动化识别需求来自于:
- 生产制造环节:流水线自动分拣,减少人工成本
- 智能拼装机器人:机器人根据识别结果精准拿取对应积木
- 质量检测:实时监控积木是否有缺陷、是否正确放置
- 仓库管理:自动盘点库存,避免积木混乱
- 教育和娱乐:智能教具中自动识别积木实现互动
传统方法依赖于手工特征,难以适应多样化的积木形态和复杂环境。深度学习目标检测提供端到端的高效解决方案。