1. 引言
随着智能交通和智能监控技术的快速发展,交通工具的自动检测成为计算机视觉领域的重要任务。尤其是自行车和摩托车作为城市交通的主要组成部分,能够准确检测它们对于交通管理、安全监控以及自动驾驶系统都有着重要意义。
本博客将详细介绍如何基于公开的 COCO 数据集,使用当前最先进的目标检测模型 YOLOv11,构建一个专门针对自行车(bicycle)和摩托车(motorcycle)两类目标的检测系统,并结合一个用户界面(UI)实现实时检测,最终形成一个完整、易用的检测解决方案。
2. 任务背景与应用场景
- 智能交通管理:监控路面自行车和摩托车流量,统计交通数据。
- 事故预警:及时发现摩托车或自行车闯红灯、逆行等危险行为。
- 城市安全:通过监控检测异常车辆,提升治安管理。
- 自动驾驶:为自动驾驶车辆提供准确的周围环境感知。
- 共享单车管理:自动识别街头停放的自行车,实现智能调度。
这些应用对检测准确率、实时性和系统稳定性都有较高的要求。
3. COCO数据集介绍及自行车、摩托车类别
COCO(Common Objects in Context)是一个广泛使用的目标检测、分割和关键点检测数据集。它包含80类物体,其中自行车(bicycle,类别ID:1