Hourly energy consumption prediction of an office building based on ensemble learning and energy consumption pattern classification.
这是ENERGY AND BUILDINGS 2021年的一篇文章,该期刊被sci收录,2019年影响因子为4.867。
摘要
准确的建筑能耗预测在建筑能耗管理中起着重要的作用,在该领域,传统的预测方法没有考虑建筑在不同时期的运行状况,导致预测效果不佳。本文提出了一种基于集成学习(ensemble learning )和能耗模式分类(energy consumption pattern classification)的预测策略,并使用气象站每小时的气象数据和纽约市办公楼的能耗数据进行实验。
本文工作分为三步进行:
- 使用决策树挖掘能耗模式,并将能耗数据分类。
- 使用集成学习方法为每个模式建立能耗预测模型。
- 将该方法的预测精度与无能耗模式分类的集成学习、支持向量回归和人工神经网络三种方法进行比较。此外,作者还通过比较以上方法在不同训练数据量下的性能,来分析它们的鲁棒性。
简介
当前,建筑能耗平均占全球总能耗的30%左右,预计未来该比例仍会快速增长。准确预测建筑能耗是制定各种建筑能效策略的基础,例如故障检测和诊断、能源分配规划和智能电网管理。
近些年,建筑能耗预测领域分方法大致分为三种类型:白盒(white box)方法、灰盒(grey box)方法和人工智能数据驱动(AI data-driven)方法。
白盒模型根据热力学规则预测建筑能耗,并已应用于许多建筑能耗模拟软件,它们基于建筑物的环境参数和建筑物设计细节(例如,建筑物外墙的导热性和暖通空调设计信息),然而,这样的模拟细节可能不可用,缺乏准确的输入会导致预测不佳;灰箱模型是一种混合模型,它使用简化的物理模型来模拟建筑能源系统,钢筋混凝土热网络模型是一种典型的建筑能耗预测灰箱模型。
上述两种方法都依赖于建筑物本身的特征(结构等),人工智能数据驱动模型则可以在不知道建筑物内部结构和单个组件的情况下进行能耗预测。现在最流行的方法涉及到传统的机器学习算法和深度学习的方法,深度神经网络预测效果佳,但它容易受到训练数据不足的影响。越来越多的研究者把目光放到了集成学习的探索中,即将各