这里的四道题思路都不一样:
- 前两道是拓扑排序,利用入度这个概念来判断图中是否有环。分别使用了队列和栈来实现。
- 建立图的时候可以利用动态扩容构建类似邻接表的数据结构
- 第三题利用了优先队列 + 贪心,优先队列(堆)插入元素的时间复杂度是
O(logn)
- 第四题是
floyd
判断图中两个点是否相连,其实是动态规划的思想,k
要写在循环的外头
课程表Ⅱ
题干
现在你总共有
numCourses
门课需要选,记为0
到numCourses - 1
。给你一个数组prerequisites
,其中prerequisites[i] = [ai, bi]
,表示在选修课程ai
前 必须 先选修bi
。例如,想要学习课程
0
,你需要先完成课程1
,我们用一个匹配来表示:[0,1]
。
返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组 。
示例 1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:[0,1]
解释:总共有 2 门课程。要学习课程 1,你需要先完成课程 0。因此,正确的课程顺序为 [0,1] 。
示例 2:
输入:numCourses = 4, prerequisites = [[1,0],[2,0],[3,1],[3,2]]
输出:[0,2,1,3]
解释:总共有 4 门课程。要学习课程 3,你应该先完成课程 1 和课程 2。并且课程 1 和课程 2 都应该排在课程 0 之后。
因此,一个正确的课程顺序是 [0,1,2,3] 。另一个正确的排序是 [0,2,1,3] 。
示例 3:
输入:numCourses = 1, prerequisites = []
输出:[0]
提示:
1 <= numCourses <= 2000
0 <= prerequisites.length <= numCourses * (numCourses - 1)
prerequisites[i].length == 2
0 <= ai, bi < numCourses
ai != bi
- 所有
[ai, bi]
互不相同
分析
拓扑排序中最前面的节点,该节点一定不会有任何入边,也就是它没有任何的先修课程要求。当我们将一个节点加入答案中后,我们就可以移除它的所有出边,代表着它的相邻节点少了一门先修课程的要求。如果某个相邻节点变成了「没有任何入边的节点」,那么就代表着这门课可以开始学习了。按照这样的流程,我们不断地将没有入边的节点加入答案,直到答案中包含所有的节点(得到了一种拓扑排序)或者不存在没有入边的节点(图中包含环)
- 「拓扑排序」是专门应用于有向图的算法;
- 这道题用
BFS
和DFS
都可以完成,只需要掌握BFS
的写法就可以了,BFS
的写法很经典; BFS
的写法就叫「拓扑排序」,这里还用到了贪心算法的思想,贪的点是:当前让入度为0
的那些结点入队;- 「拓扑排序」的结果不唯一;
- 删除结点的操作,通过「入度数组」体现,这个技巧要掌握;
- 「拓扑排序」的一个附加效果是:能够顺带检测有向图中是否存在环,这个知识点非常重要,如果在面试的过程中遇
- 到这个问题,要把这一点说出来。
- 具有类似附加功能的算法还有:
Bellman-Ford
算法附加的作用是可以用于检测是否有负权环(在这里不展开了,我也不太熟)。
代码
int* findOrder(int numCourses, int** prerequisites, int prerequisitesSize, int* prerequisitesColSize, int* returnSize){
int n = numCourses;