测试ConcurrentHashMap

该博客通过并发测试展示了ConcurrentHashMap在多线程环境下的性能。首先创建了一个ConcurrentHashMap,并用多个线程进行并发插入操作,然后测量了插入操作的时间。接着,再次使用多个线程进行大量并发读取操作,同样记录了执行时间。测试结果显示ConcurrentHashMap在高并发场景下表现出良好的性能和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

												测试ConcurrentHashMap
package src.main.java.com.qqjx.thread;

import java.util.Map;
import java.util.UUID;
import java.util.concurrent.ConcurrentHashMap;

public class T04_TestConcurrentHashMap {

    static Map<UUID, UUID> m = new ConcurrentHashMap<>();

    static int count = Constants.COUNT;
    static UUID[] keys = new UUID[count];
    static UUID[] values = new UUID[count];
    static final int THREAD_COUNT = Constants.THREAD_COUNT;

    static {
        for (int i = 0; i < count; i++) {
            keys[i] = UUID.randomUUID();
            values[i] = UUID.randomUUID();
        }
    }

    static class MyThread extends Thread {
        int start;
        int gap = count/THREAD_COUNT;

        public MyThread(int start) {
            this.start = start;
        }

        @Override
        public void run() {
            for(int i=start; i<start+gap; i++) {
                m.put(keys[i], values[i]);
            }
        }
    }

    public static void main(String[] args) {

        long start = System.currentTimeMillis();

        Thread[] threads = new Thread[THREAD_COUNT];

        for(int i=0; i<threads.length; i++) {
            threads[i] =
                    new MyThread(i * (count/THREAD_COUNT));
        }

        for(Thread t : threads) {
            t.start();
        }

        for(Thread t : threads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        long end = System.currentTimeMillis();
        System.out.println(end - start);

        System.out.println(m.size());

        //-----------------------------------

        start = System.currentTimeMillis();
        for (int i = 0; i < threads.length; i++) {
            threads[i] = new Thread(()->{
                for (int j = 0; j < 10000000; j++) {
                    m.get(keys[10]);
                }
            });
        }

        for(Thread t : threads) {
            t.start();
        }

        for(Thread t : threads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        end = System.currentTimeMillis();
        System.out.println(end - start);
    }
}
533
1000000
671
### ConcurrentHashMap 方法及使用示例 #### 构造方法 `ConcurrentHashMap` 提供了几种不同的构造器来创建实例。最常用的构造方式是无参构造器,这会创建一个默认大小的 `ConcurrentHashMap` 实例。 ```java import java.util.concurrent.ConcurrentHashMap; // 创建一个新的空 ConcurrentHashMpa,默认初始容量为16,负载因子0.75f,并且允许最多16个线程并发修改。 ConcurrentHashMap<String, Integer> concurrentHashMap = new ConcurrentHashMap<>(); ``` #### 基本操作方法 - **put(key, value)**: 将指定键映射到给定值;如果该键已经存在,则替换旧值[^1]。 ```java concurrentHashMap.put("one", 1); ``` - **get(Object key)**: 返回指定键所映射的值;如果此映射不包含该键的映射关系则返回null。 ```java System.out.println(concurrentHashMap.get("one")); // 输出:1 ``` - **remove(Object key)** 和 **remove(Object key, Object value)**: 移除特定项或仅当当前值等于预期值时移除该项。 ```java concurrentHashMap.remove("one"); boolean removedSuccessfully = concurrentHashMap.remove("two", 2); // 如果 "two" 映射的是2才会成功删除并返回true ``` - **containsKey(Object key)**: 判断是否存在某个key。 ```java boolean containsOne = concurrentHashMap.containsKey("one"); // false因为前面已删除 ``` - **size()**: 获取map中entry的数量。 ```java int sizeOfMap = concurrentHashMap.size(); ``` - **isEmpty()**: 测试这个映射是否为空。 ```java boolean isEmpty = concurrentHashMap.isEmpty(); ``` #### 高级特性 - **computeIfAbsent(K key, Function<? super K,? extends V> mappingFunction)**: 当指定键不存在关联值时应用给定函数计算其值,并将其作为新条目插入[^3]。 ```java String result = concurrentHashMap.computeIfAbsent("three", k -> { return "value_for_" + k; }); ``` - **merge(K key,V value,BiFunction<? super V,? super V,? extends V> remappingFunction)**: 插入/更新键对应的值,如果有冲突则按提供的合并逻辑处理。 ```java concurrentHashMap.merge("four", 4, (oldValue, newValue) -> oldValue != null ? oldValue * newValue : newValue); ``` 这些方法使得 `ConcurrentHashMap` 成为了适合高并发环境下的高效工具类之一[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值