- 博客(85)
- 收藏
- 关注
原创 论文学习记录之《DiffusionVel》
扩散速度模型:利用生成扩散模型进行多信息融合的速度反演Hao Zhang;Geophysics2024年10月29日全波形反演(FWI)能够从地震数据中以高分辨率重建地下介质属性。然而,传统的FWI面临着诸如周期跳跃和计算成本高昂等挑战。最近,深度学习方法作为一种有前景的解决方案,用于高效的地震波速度估计。我们开发了DiffusionVel,这是一种基于最先进的生成扩散模型(GDMs)的数据驱动技术,并整合了包括地震数据、背景速度、地质知识和井日志在内的多种信息。我们使用两个独立的条件GDM。
2025-05-23 18:49:39
1296
原创 论文学习记录之《Multiscale Deep Learning Reparameterized Full Waveform Inversion With the Adjoint Method》
将深度学习技术应用于全波形反演(FWI)理论是一个重要的研究方向。利用深度学习提供的非线性表示并开展实际的FWI是至关重要的。本文利用FWI中的经典伴随方法计算模型参数的梯度采用深度学习来表示模型参数并优化网络训练。重点是通过多尺度深度学习优化实现高精度的FWI。
2025-05-19 21:30:38
908
原创 论文学习记录之《 Unbalanced graph isomorphism network for fracture identification by well logs》
本帖记录论文学习之《Unbalanced graph isomorphism network for fracture identification by well logs》
2025-03-23 20:35:26
842
原创 循环学习率CLR——Cyclical Learning Rates
学习率是训练深度神经网络时的重要超参数,本贴介绍了一种设置学习率的方法——循环学习率。
2025-02-16 20:29:21
1089
原创 论文学习记录之《CLR-VMB》
数据驱动的全波形反演在地下速度估计方面显示出巨大的潜力,但其准确性往往受到局部最小值敏感性和地震数据固有特性的阻碍。地震炮点道集通常在数据和速度模型之间表现出微弱的空间相关性,由于反射事件的稀疏性而变得更加复杂。本研究提出了一种循环学习率-速度模型构建(CLR-VMB)框架,该框架结合了一个U形残差网络(ResNet)和双注意力机制(DA-ResNet)来应对这些挑战。
2025-02-13 19:47:30
1123
原创 地震勘探原理视频总结(7-10)
2.1 什么是地震波;2.2 地震波有哪些主要类型;2.3 地震波是如何传播的;2.4 地震是如何反射折射和透射的
2024-09-18 19:52:23
1391
原创 地震勘探原理视频总结(1-6)
①为什么要学好这门课;②石油的生成与聚集;③石油勘探的主要方法;④为什么说地球物理勘探是找油先锋;⑤地震勘探的形成与发展;⑥石油地球物理勘探的奠基人;
2024-09-15 19:36:39
1332
原创 2024年8月6日~2024年8月12日周报:论文学习记录之《MAU-net: A multibranch attention U-net for full-waveform inversion》
本文主要记录MAU-Net网络学习,网络的输入包含地震记录与先验地质模型,损失函数使用MSE与SSIM的结合,在盐数据与Marmousi数据集上验证了性能。
2024-08-12 21:17:37
1234
原创 2024年7月23日~2024年7月29日周报
本文记录两篇文献阅读情况:一种具有边缘增强特点的医学分割网络、融合边缘增强注意力机制和Unet网络的医学图像分割。
2024-07-29 20:45:40
955
原创 论文学习记录之一种具有边缘增强特点的医学图像分割网络
本文提出一种具有边缘增强特点的医学图像分割网络(AS-UNet),利用掩膜边缘提取算法得到掩膜边缘图,在UNet扩张路径的最后3层引入结合多 尺度特征图的边缘注意模块(BAB),并提出组合损失函数来提高分割精度;测试时通过舍弃BAB来减少参数。
2024-07-22 22:35:51
1325
原创 2024年6月27日~2024年7月1日周报
本周学习了吴恩达机器学习中的单变量线性回归、线性代数回顾、多变量线性回归等,尝试生成速度模型剖面图。
2024-07-01 16:39:45
878
原创 2024年3月30日~2024年4月7日周报
本周阅读论文《地震速度模型超分辨率的多任务学习》,了解了一些边缘检测知识,通过调试sobel与canny算子理解其优缺点。
2024-04-08 22:12:34
1133
原创 论文学习记录之D2UNet: Dual Decoder U-Net for Seismic ImageSuper-Resolution Reconstruction
D2UNet: Dual Decoder U-Net for Seismic Image Super-Resolution Reconstruction(D2UNet:用于地震图像超分辨率重建的双解码器U-Net)
2024-04-03 17:06:32
1581
1
原创 2024年3月16日~2024年3月22日周报
本周完成了 D2UNet 网络的复现任务。在复现过程中,学习了一些新的概念,比如:可变形卷积、亚像素卷积、残差连接等,对网络的设计与调整有了新的认识。
2024-03-22 13:20:40
943
原创 学习记录之数学表达式(2)
本文介绍了向量与矩阵、常见的二元关系、二元关系的性质、等价关系与划分、二元关系的应用、二元关系的运算、公式对齐、数学结构以及定界符。
2024-03-19 14:38:43
859
原创 2024年3月2日~2024年3月15日周报
最近两周,继续修改网络框架结构,并阅读了师姐的论文 D2UNet。另外,完成了本科毕业设计的开题答辩任务,开题报告还需要进一步修改。
2024-03-15 13:17:17
1114
2
原创 2024年2月24日~2024年3月1日周报(调整网络结构)
在本周,寻找改进网络框架与超参数的灵感,并跑代码查看效果。另外,完成了毕业设计开题报告任务。
2024-03-01 13:55:21
1263
原创 论文阅读记录之DD-Net(DD-Net: Dual decoder network with curriculumlearning for full waveform inversion)
论文学习:DD-Net: Dual decoder network with curriculumlearning for full waveform inversion。
2024-02-04 14:15:12
1350
原创 2023年1月20日-2024年1月26日(阅读SeisInvNet加强版、调整参数)
上周阅读了SeisInvNet论文,本周阅读它的加强版,并尝试对InversionNet的网络框架进行一些小的修改,调整参数、添加组件等。
2024-01-26 17:47:30
1255
原创 论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels
Deep-learning seismic full-waveform inversion for realistic structuralmodels,是SeisInvNet的加强版,主要贡献在新的数据集的建立与增强嵌入向量。
2024-01-25 20:54:13
1740
原创 2024年1月13日~2024年1月19日(研读论文、了解语义分割)
本周继续阅读《SeisInvNet》论文,并理解其逻辑结构。另外,在B站寻找视频了解了语义分割任务逻辑、深度学习一些概念等。
2024-01-19 16:51:46
2077
原创 论文学习记录之SeisInvNet(Deep-Learning Inversion of Seismic Data)
地震勘探是根据地震波在大地中的传播规律来确定地下地层结构的一种方法,主要可以从反射或折射的地震波来估计地球地下的物理性质。通常,需要人工能源,并在地表放置一系列接收器来记录地震波(如图1所示)。处理记录数据的一个主要结果是重建地下速度模型,即地震速度反演。近年来,全波形反演(FWI)是目前最具吸引力的高精度和高分辨率速度模型重建方法之一。
2024-01-19 11:42:37
1116
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人