面试场景设定:
你是一位具有5年Java后端开发经验的求职者,正在参与一家互联网大厂的高级开发岗面试。面试官围绕“电商系统”进行提问,内容涵盖Spring Cloud、Kafka、数据库设计与服务容错等核心技术,并设置逐步深入的技术追问。
第一轮:微服务架构基础设计
面试官:我们公司正在搭建一套微服务电商平台,请你说明下如何用Spring Cloud进行模块拆分及服务间通信设计?
问题1:你会如何划分电商系统的微服务模块?
问题2:Spring Cloud中你打算使用什么方式做服务注册与发现?
问题3:服务间通信你会选择RestTemplate还是OpenFeign?为什么?
问题4:如果有一些核心服务不允许宕机,怎么保证高可用性?
问题5:限流与熔断你如何设计?
第二轮:消息驱动与数据一致性设计
面试官:电商系统中订单、库存、支付都涉及复杂的消息协同,你在Kafka中如何设计异步通信?
问题1:请说出订单创建后如何异步通知库存中心进行扣减?Kafka的消费逻辑怎么设计?
问题2:你如何保证消息“至少投递一次”但避免重复消费?
问题3:假设库存服务处理失败,你如何保证消息重试但又不阻塞整体流程?
问题4:如何在Kafka与数据库操作之间保证最终一致性?你会怎么落地?
问题5:Kafka集群宕机时系统怎么降级?
第三轮:系统监控与异常诊断
面试官:系统上线后稳定运行很关键,我们有一套基于Prometheus + Grafana + ELK的运维体系,你觉得这些组件怎么协同工作?
问题1:Spring Boot如何集成Micrometer将服务指标采集给Prometheus?
问题2:有哪些指标你会重点关注来判断系统健康?
问题3:日志采集方面,ELK Stack怎么部署和使用?
问题4:一次支付请求链路过慢,你如何用Zipkin或Jaeger排查瓶颈?
问题5:请说下你在定位线上生产故障时的经验和工具使用方法。
面试官总结发言:
“感谢你的分享,我们会在内部进行评估,稍后通过电话或邮件联系你,辛苦了!”
知识详解与学习总结:
第一轮技术点详解:
微服务划分:典型模块包括:用户服务、商品服务、订单服务、库存服务、支付服务、网关服务等。每个服务职责单一,符合高内聚低耦合原则。
服务注册与发现:使用Spring Cloud Netflix Eureka或Consul注册服务,自动发现服务位置,提高灵活性。
服务通信:推荐使用OpenFeign,因为其更贴近声明式开发,支持Ribbon负载均衡与Hystrix熔断配置。
高可用性:通过服务集群+注册中心+负载均衡+熔断降级机制(如Resilience4j)确保关键路径稳定运行。
限流设计:可以借助Spring Cloud Gateway内置限流器或使用Sentinel做细粒度限流策略。
第二轮技术点详解:
Kafka消息驱动:在订单服务下单后发送Kafka消息到库存主题,库存服务监听处理消息并扣减库存。采用消费者组实现并发消费。
重复消费与幂等性:在消费端加入幂等逻辑,如幂等Key写入Redis或数据库记录防重复处理。
重试机制:使用DLQ(死信队列)或定制重试Topic实现失败重试,同时主业务流程不阻塞。
最终一致性:使用事务消息+本地消息表+定时补偿等方案,避免分布式事务带来的性能和复杂性问题。
Kafka降级:启用消息缓冲队列,必要时降级到同步调用,或者存入数据库待恢复后补偿处理。
第三轮技术点详解:
指标采集:Micrometer是Spring Boot内置的指标桥接库,配合Prometheus采集如JVM GC、线程数、HTTP请求时间等关键指标。
系统健康指标:包括CPU负载、内存占用、请求成功率、平均响应时间、错误率、消息积压等。
日志分析:ELK (Elasticsearch + Logstash + Kibana) 可实时分析日志数据,通过Kibana可视化操作异常日志。
链路追踪:使用Zipkin/Jaeger采集分布式调用数据,快速定位在哪个服务环节出现延迟。
故障排查经验:先看Prometheus告警、再看ELK日志、使用链路追踪定位具体服务,再借助日志或热线程Dump工具诊断。