YOLOV8分类任务更换主干mobilenetv2网络

目录

1.定义模块

 2.导入模块

3.task.py文件更改

4.更改后找文件运行一下


1.定义模块

自定义Movilenet_v2类

class Mobilenet_v2(nn.Module):
    def __init__(self):
        super().__init__()
        model = models.mobilenet_v2(pretrained=True)
        self.layer=nn.Sequential(
        model.features,
        )
    def forward(self, x):
        x=self.layer(x)
        x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
        return x

 2.导入模块

3.task.py文件更改

 

<think>我们正在处理一个关于YOLOv8修改主干网络的问题。用户希望了解如何在YOLOv8中自定义或修改主干网络架构。根据提供的引用,特别是引用[3],我们可以知道更换主干网络为ShuffleNetV2的具体步骤。此外,引用[1]和引用[2]也提到了一些改进主干网络的策略,如使用ShuffleNetV2和DenseNets(RDNet)等。具体步骤:1.创建新的YAML配置文件,定义新的主干网络2.在代码中加载这个新的YAML文件来构建模型。3.可以选择从预训练模型加载权重(推荐),然后进行训练。在引用[3]中,有一个具体的代码示例,展示了如何加载自定义的YAML配置文件(yolov8_ShuffleNetV2.yaml)并进行训练。因此,我们可以按照以下步骤来指导用户:步骤1:准备新的主干网络架构的YAML配置文件。步骤2:在代码中通过YOLO类加载这个配置文件。步骤3:加载预训练权重(可选,但推荐)。步骤4:进行训练。需要注意的是,YOLOv8的模型结构是通过YAML文件定义的,所以修改主干网络需要创建一个新的YAML文件,该文件定义了整个模型的架构,包括主干(backbone)、颈部(neck)和头部(head)。在自定义的主干网络中,我们需要将原来的主干网络替换为新的网络结构。下面我们将详细说明每一步。</think>### 在 YOLOv8 中自定义主干网络架构 在 YOLOv8 中修改主干网络结构需遵循以下步骤(以 ShuffleNetV2 为例): #### 1. **创建自定义 YAML 配置文件** 新建 `.yaml` 文件(如 `yolov8_custom_backbone.yaml`),替换主干网络定义: ```yaml backbone: # [输入通道数, 模块类型, 参数...] - [-1, 1, Conv, [64, 3, 2]] # 初始卷积层 - [-1, 1, ShuffleNetV2, [out_channels, stride]] # 自定义主干模块 # ... 其他层配置(参考原 yolov8n.yaml) head: # 保持原检测头配置 ``` #### 2. **加载自定义模型** ```python from ultralytics import YOLO # 方式1:从YAML新建模型 model = YOLO('yolov8_custom_backbone.yaml') # 方式2:加载预训练权重并替换主干 model = YOLO('yolov8n.pt') # 加载官方预训练 model.load('yolov8_custom_backbone.yaml') # 替换主干架构 ``` #### 3. **启动训练** ```python results = model.train( data='your_dataset.yaml', # 数据集配置 epochs=100, imgsz=640, batch=16, # 根据显存调整 pretrained=True # 启用主干网络权重初始化 ) ``` #### 关键注意事项: 1. **结构兼容性** 新主干网络的输出特征图尺度需与原 Neck 模块匹配,例如: - 最后3层特征图尺寸应为原模型的 $\frac{1}{8}, \frac{1}{16}, \frac{1}{32}$ 输入尺寸 - 通道数变化需在 Neck 模块中可衔接 2. **迁移学习策略** - 使用 `pretrained=True` 初始化主干权重 - 冻结部分层加速收敛: ```python for p in model.model.backbone[:10].parameters(): # 冻结前10层 p.requires_grad = False ``` 3. **轻量化网络示例** ShuffleNetV2 的核心模块结构[^1]: ```python class ShuffleBlock(nn.Module): def __init__(self, inp, oup, stride): super().__init__() self.stride = stride branch_features = oup // 2 # 通道分割与卷积操作 ... def forward(self, x): # 通道shuffle机制 ... ``` #### 性能优化建议 - **计算量验证**:使用 `thop` 库测算 FLOPs ```python from thop import profile flops, params = profile(model, inputs=(torch.randn(1,3,640,640),)) ``` - **部署友好设计**:避免动态操作(如切片索引),优先使用静态层
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西柚与蓝莓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值