单细胞转录组文章复现系列(一)——seurat

本文档详细介绍了如何复现一篇关于乳腺癌纤维细胞单细胞转录组分析的文章,使用R语言Seurat包进行数据处理,包括读入数据、过滤、标准化、主成分分析、聚类和细胞比例计算等步骤,最后展示了与原文相似的可视化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

说明:之前做的复现有一点问题,这一版已经是更改过的。放心食用。

期刊 :Cancer
标题 :Single-Cell T tanscriptomic Analysis of T umor-Derived Fibroblasts and Normal Tissue-Resident Fibroblasts Reveals Fibroblast Heterogeneity in Breast Cancer。

文章链接

摘要 :主要对小鼠乳腺癌CAFs和正常小鼠成纤维细胞进行单细胞测序,并对CAFs的异质性进行了描述。并未涉及机制研究,算是一篇纯的不行的生信文章。适合入门。
废话不多说,开办。


# 一、数据下载 文章的数据一把藏在dataability里面,但是这篇文章的数据在方法中。 除了部分supplementary中的图没有数据外,正文数据都可以下载。下载解压后是txt文件。

数据下载

二、操作

1.看文章

当然是先看文章了,然后根据文章的方法设置参数,当然你也可以自己设置参数,用文章的参数是为了检验自己有没有别的地方做错了。
质控条件

2.读入数据,过滤

这里文献提供的是counts矩阵。(部分文章提供的是稀疏矩阵,需要read10x读取)
代码如下:

rm(list = ls())
options(stringsAsFactors = F)
library(dplyr)
library(Seurat)
library(patchwork)
library(R.utils)
library(textshape)
library(monocle)
##读取CSV文件,如果是三文件的10x数据可直接创建seurat对象
a <- read.table(file = '4T1_viable_raw_counts.txt',header = T,sep = '\t',fill = T)

2.Seurat流程

seurat标准流程包括:(复杂的还应该包括多个数据集的整合)
创建seurat对象,
过滤,
(在此我没有对线粒体基因进行过滤,但是整体效果与文章大致相同。没做线粒体基因过滤的原因呢,主要是基因名字里面没有找到’Mt-‘开头的基因,如果要过滤,可以网上搜索小鼠线粒体基因,本人较懒,所以,哈哈)
normalize,
findvariablefeatures,
scale,
runpca,
findneighbors,
findclusters
可视化
代码如下:

# 一、Seurat流程 -------------------------------------------------------------------
sc <- CreateSeuratObject(counts = a,project = 'mouse_viable'
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一口吃两口饭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值