前言
说明:之前做的复现有一点问题,这一版已经是更改过的。放心食用。期刊 :Cancer
标题 :Single-Cell T tanscriptomic Analysis of T umor-Derived Fibroblasts and Normal Tissue-Resident Fibroblasts Reveals Fibroblast Heterogeneity in Breast Cancer。
摘要 :主要对小鼠乳腺癌CAFs和正常小鼠成纤维细胞进行单细胞测序,并对CAFs的异质性进行了描述。并未涉及机制研究,算是一篇纯的不行的生信文章。适合入门。
废话不多说,开办。
# 一、数据下载 文章的数据一把藏在dataability里面,但是这篇文章的数据在方法中。 除了部分supplementary中的图没有数据外,正文数据都可以下载。下载解压后是txt文件。
二、操作
1.看文章
当然是先看文章了,然后根据文章的方法设置参数,当然你也可以自己设置参数,用文章的参数是为了检验自己有没有别的地方做错了。
2.读入数据,过滤
这里文献提供的是counts矩阵。(部分文章提供的是稀疏矩阵,需要read10x读取)
代码如下:
rm(list = ls())
options(stringsAsFactors = F)
library(dplyr)
library(Seurat)
library(patchwork)
library(R.utils)
library(textshape)
library(monocle)
##读取CSV文件,如果是三文件的10x数据可直接创建seurat对象
a <- read.table(file = '4T1_viable_raw_counts.txt',header = T,sep = '\t',fill = T)
2.Seurat流程
seurat标准流程包括:(复杂的还应该包括多个数据集的整合)
创建seurat对象,
过滤,
(在此我没有对线粒体基因进行过滤,但是整体效果与文章大致相同。没做线粒体基因过滤的原因呢,主要是基因名字里面没有找到’Mt-‘开头的基因,如果要过滤,可以网上搜索小鼠线粒体基因,本人较懒,所以,哈哈)
normalize,
findvariablefeatures,
scale,
runpca,
findneighbors,
findclusters
可视化
代码如下:
# 一、Seurat流程 -------------------------------------------------------------------
sc <- CreateSeuratObject(counts = a,project = 'mouse_viable'