背景:
不仅在NLP领域,自注意力机制也在CV领域有着广泛的应用。所以,如何很好地实现自注意力机制成为比较关键的问题。下面我们来对于该机制进行简单实现。
先总结一下思路:
1. 我们的输入是一个(B,N,C)形状的矩阵,其中B代表Batch Size,N代表Time Step,C代表每个Time Step的维度。
2. 我们想做的是,根据输入得到多头的qkv。qkv分别代表query,key,value。我们想用query来查询key而得到一个关联度矩阵A。
3. 由于是多头注意力,我们得到了多个关联度矩阵,我们要将多个关联度矩阵合并为一个。
4. 最后的关联度矩阵和value矩阵相乘,等到最后的输出。
最后的代码如下:
import torch,math
import torch.nn as nn
class MultiHead_SelfAttention(nn.Module):
def __init__(self, dim, num_head):
'''
Args:
dim: dimension for each time step
num_head:num head for multi-head self-attention
'''
super().__init__()
self.dim=dim
self.num_head=num_head
self.qkv=nn.Linear(dim, dim*3) # extend the dimension for later spliting
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_head, C//self.num_head).permute(2, 0, 3, 1, 4)
q, k, v= qkv[0], qkv[1], qkv[2]
att = q@k.transpose(-1, -2)/ math.sqrt(C)
att = att.softmax(dim=1) # 将多个注意力矩阵合并为一个
x = (att@v).transpose(1, 2)
x=x.reshape(B, N, C)
return x
if __name__=='__main__':
B = 10
N = 20
C = 32
num_head=8
x = torch.rand((B, N, C))
MHSA=Multihead_SelfAttention(C, num_head)
print(MHSA(x).shape)