基于Python实现的HDR图像处理算法

此代码会读取两张图片,一张用于保留高光细节,另一张用于保留暗部细节。两张图片按指定比例进行像素融合,最终生成一张合成的HDR图片。

import cv2
import numpy as np

def hdr_fusion(highlight_img_path, shadow_img_path, output_path, alpha=0.5):
    """
    HDR融合算法,读取两张图片并根据比例进行像素融合。
    
    :param highlight_img_path: 高光细节图片路径
    :param shadow_img_path: 暗部细节图片路径
    :param output_path: 合成图片的输出路径
    :param alpha: 高光图片的权重,范围为0到1
    """
    # 读取两张图片
    highlight_img = cv2.imread(highlight_img_path)
    shadow_img = cv2.imread(shadow_img_path)

    if highlight_img is None or shadow_img is None:
        print("无法读取图片,请检查文件路径。")
        return
    
    # 确保两张图片大小一致
    if highlight_img.shape != shadow_img.shape:
        print("两张图片大小不一致,调整大小...")
        shadow_img = cv2.resize(shadow_img, (highlight_img.shape[1], highlight_img.shape[0]))

    # 像素融合公式: result = alpha * highlight_img + (1 - alpha) * shadow_img
    fused_img = cv2.addWeighted(highlight_img, alpha, shadow_img, 1 - alpha, 0)

    # 保存结果图片
    cv2.imwrite(output_path, fused_img)
    print(f"融合完成,结果已保存至:{output_path}")

if __name__ == "__main__":
    # 输入图片路径
    highlight_img_path = "./highlight.jpg"  # 高光细节图片路径
    shadow_img_path = "./shadow.jpg"       # 暗部细节图片路径
    output_path = "./hdr_result.jpg"       # 合成图片保存路径

    # 设置高光图片的权重 (0到1之间)
    alpha = 0.5

    # 调用HDR融合函数
    hdr_fusion(highlight_img_path, shadow_img_path, output_path, alpha)

效果测试(网图,学习使用,侵权删)

暗部细节:

亮部细节

融合效果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤劳的进取家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值