- 博客(27)
- 收藏
- 关注
原创 一文彻底搞懂Transformer架构:从自注意力机制到BERT、GPT演进之路
在今天,当我们谈论人工智能时,几乎无法绕开ChatGPT、Llama、Claude等一系列令人惊叹的大型语言模型(LLM)。它们能写诗、能编程、能进行富有逻辑的对话,仿佛叩开了通用人工智能(AGI)的大门。然而,在这场波澜壮阔的AI革命背后,有一个共同的、强大的技术引擎在默默驱动着这一切。它,就是**Transformer架构**。对于任何希望深入理解、应用乃至构建未来AI系统的人来说,理解Transformer不再是锦上添花,而是必修课。今天,就让我们一起,层层剥开这颗“洋葱”,从其诞生的源头,到它如
2025-06-15 17:43:43
874
原创 【FastAPI高级实战】结合查询参数与SQLModel Joins实现高效多表查询(分页、过滤、计数)
这篇文章介绍了如何使用FastAPI和SQLModel实现高级查询功能,主要包括查询参数和数据库表联接两大核心技能。首先讲解了查询参数的用途(过滤、分页、搜索等)及其在URL中的表现形式,然后通过代码示例详细展示了如何利用FastAPI的依赖注入获取查询参数,并使用SQLModel构建复杂查询(包括LEFT OUTER JOIN连接表、分组统计和条件过滤)。特别强调了多表连接查询的实现方法,以及如何正确处理分页和搜索功能,最终返回符合特定响应模型的数据结构。文章通过博客平台的实例,说明了如何构建支持分页、搜
2025-06-15 15:18:37
660
原创 一文彻底搞懂大型语言模型(LLM):核心机制、训练流程、关键技术与未来展望(LLM领域必读)
自ChatGPT等应用的惊艳亮相以来,“大型语言模型”(Large Language Model, LLM)这个词汇便如一股旋风,迅速席卷了科技圈乃至公众视野。它们不仅能与人流畅对话、写作,甚至在编程、逻辑推理等领域也展现出令人惊叹的能力。那么,这些“语言巨匠”究竟是什么?它们如何工作?又将如何重塑我们的世界?本文将给你娓娓道来。
2025-06-14 22:28:04
1356
原创 FastAPI安全深度剖析:依赖注入、JWT与细粒度权限控制
本文探讨如何利用FastAPI的依赖注入系统结合JWT实现安全的API认证。FastAPI的依赖注入机制允许将认证逻辑封装为可复用的依赖项,通过Depends()注入到路由函数中,实现请求前的自动认证检查。文章详细介绍了JWT的认证流程,包括用户登录时生成令牌、客户端存储使用,以及服务器端验证令牌的完整过程。重点展示了如何通过OAuth2PasswordBearer获取令牌,并编写get_current_user依赖函数进行JWT验证,实现无状态认证。该方法使安全逻辑集中管理,保持路由代码简洁,同时确保AP
2025-06-14 17:14:04
879
原创 Fast API 中的用户认证:深入理解 JWT(JSON Web Tokens)
本文深入探讨了在FastAPI中利用JWT实现安全API认证的方案。文章首先强调了API认证的重要性,对比了基于会话和基于令牌两种认证方式的优缺点。重点剖析了JWT的结构(Header,Payload,Signature)及其无状态认证的工作原理,特别指出JWT虽可验证但未加密的特性,以及安全密钥保护的必要性。随后介绍了使用passlib和bcrypt进行密码哈希存储的方法。最后展示了如何将这些技术整合到FastAPI应用中,通过SQLModel实现用户注册、登录和JWT认证的完整流程。文章为开发者提供了构
2025-06-14 14:17:03
795
原创 FastAPI的数据契约:Pydantic与SQLModel联手打造健壮API
这篇文章探讨了在API开发中明确数据契约(Schema)的重要性,以及如何利用Pydantic和SQLModel来构建健壮的API数据层。
2025-06-11 22:36:23
1172
原创 解锁数据库简洁之道:FastAPI与SQLModel实战指南
摘要:FastAPI中的SQLModel ORM实践 SQLModel作为FastAPI官方推荐的ORM工具,巧妙结合了Pydantic的数据校验和SQLAlchemy的数据库交互能力。本文介绍了SQLModel的核心配置与应用实践:首先创建数据库引擎(Engine)建立连接,通过SQLModel.metadata.create_all()自动建表;然后使用依赖注入管理会话(Session)生命周期,确保事务安全;最后详细展示了如何定义SQLModel模型类,通过Python类映射数据库表结构,包括主键设置
2025-06-10 23:11:22
1147
原创 PostgreSQL 与 SQL 基础:为 Fast API 打下数据基础
本文介绍了使用Python FastAPI构建Web API时如何高效操作PostgreSQL数据库。主要内容包括:关系型数据库核心概念(表、关系),PostgreSQL作为DBMS的特点;SQL语言的基本操作(SELECT查询、WHERE过滤);以及Python中使用psycopg2驱动连接数据库的最佳实践,重点强调了参数化查询防止SQL注入。文章还展示了如何通过RealDictCursor获取字典形式结果,在FastAPI中实现数据查询API端点。这些技术为FastAPI项目提供了坚实的数据存储基础。
2025-06-09 21:22:44
1318
原创 FastAPI核心解密:深入“路径操作”与HTTP方法,构建API的坚实骨架
在上一篇我们成功搭建了环境并运行了第一个“Hello World”API后,你可能已经对 `@app.get("/")` 这个小小的“魔法”产生了好奇。这正是FastAPI的**核心基石——“路径操作”(Path Operations)**。它如同API世界的交通枢纽,精确地将客户端发来的每一个HTTP请求导向正确的处理函数。而**HTTP方法**,则是这些请求的“行动指令”,明确告知服务器我们想对资源进行何种操作(是获取信息?还是创建新内容?亦或是更新或删除?)。透彻理解并熟练运用路径操作与HTTP方
2025-06-09 20:54:04
1237
原创 FastAPI实战起步:从Python环境到你的第一个“Hello World”API接口
摘要:本文详细介绍了如何从零开始搭建FastAPI开发环境。首先强调了虚拟环境的重要性,它能解决Python包依赖冲突问题,并通过venv模块创建隔离的开发环境。接着指导读者安装FastAPI及其依赖组件,编写第一个"Hello World"API接口代码,最后使用Uvicorn服务器运行项目。文章还预告了后续将深入讲解FastAPI的路径操作和HTTP方法,帮助开发者构建功能更丰富的API。整个过程涵盖了虚拟环境设置、FastAPI安装、代码编写和项目运行等关键步骤。
2025-06-08 20:37:47
986
原创 FastAPI入门:为何它能成为现代API开发的首选利器?
摘要:API开发与FastAPI的魅力 API作为数字世界的"沟通官",通过标准协议(如RESTful风格和JSON格式)实现不同软件组件的高效交互。现代API开发中,FastAPI凭借其卓越性能成为首选框架:它构建于ASGI架构之上,提供闪电般的响应速度;自动生成交互式API文档,彻底解决文档维护难题;深度集成Pydantic实现智能数据验证;采用优雅的依赖注入系统提升代码复用性。FastAPI不仅简化了开发流程,还能无缝对接Python丰富生态,是构建高性能、易维护API的理想选择,
2025-06-08 12:08:31
730
原创 智能体模式篇(下)- 知识增强:用 LangGraph 构建可自主决策的 RAG 智能体
本篇文章将深入探讨如何利用 **LangGraph**,将 RAG 从一个线性的数据处理管道,升维成一个能够**自主决策、动态执行**的智能体。我们将揭示 LangGraph 如何赋予 RAG 系统真正的“智能”。
2025-06-07 21:59:54
661
原创 智能体模式篇 (中) - 人机协作:LangGraph构建交互式助手
本篇博客将深入探讨如何利用 LangGraph 构建一个真正意义上的人机协作智能体。我们将以“Drafter”(文档起草助手)为例,详细解析如何通过**意图驱动的工具(Intent-driven Tools)**和非对称的条件路由(Asymmetric Conditional Routing)**,实现一个能够与人类用户无缝协作、持续迭代、直至完美的智能文档起草系统。
2025-06-07 17:46:25
984
原创 智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
深入探讨一种赋予 AI **自主规划与执行能力**的强大模式——**ReAct (Reasoning and Acting)**。通过 LangGraph,我们将构建一个能够**思考(Reasoning)**并**行动(Acting)**的智能体,教会它如何利用外部工具来达成复杂目标。
2025-06-07 15:19:19
1199
原创 让AI“记住”你:用LangGraph打造有记忆的聊天机器人
在上篇博文中,我们用LangGraph和LLM构建了“简单机器人”(Agent Bot),它能响应用户查询,但却患上了“失忆症”——无法记住之前的对话,每次交互都像初次见面。😅 在现实世界的AI应用中,记忆是流畅对话的灵魂!今天,我们将为Agent I注入“记忆”,升级为**Memory Agent:带记忆的聊天机器人**,让它成为真正贴心的“对话伙伴”。🚀
2025-06-06 23:38:45
987
原创 从零到一:用LangGraph与LLM打造你的首个AI智能体
本文介绍了如何将大型语言模型(LLM)集成到LangGraph框架中,构建一个基础的无记忆智能体(Agent Bot)。文章首先阐述了LLM与LangGraph结合的价值:通过图结构的节点和边协调数据流,让LLM作为推理引擎增强工作流智能化。随后详细讲解了实现步骤:定义包含用户消息的AgentState状态;创建调用LLM处理输入的process节点;构建简单的工作流图结构(从START到process再到END)。文中还指出当前实现的局限性——缺乏对话记忆能力,导致无法记住上下文,并展望了未来通过优化状态
2025-06-05 23:53:05
853
原创 决策与循环:LangGraph构建条件执行和带循环的图
本文深入探讨LangGraph中的两种流程控制方法:条件边和循环图,以增强AI Agent的决策与迭代能力。条件边通过路由函数实现动态路径选择,模拟if-else逻辑;循环图则通过条件边形成回路,支持迭代优化。文章通过加法/减法选择器和随机数生成器两个实例,分别展示了条件判断和循环执行的实现方式,包括状态定义、节点构建和路由逻辑。这些技术赋予AI Agent自主决策和持续优化的能力,使其能够灵活应对复杂任务。文末提供完整代码示例供读者参考实践。
2025-06-05 22:31:31
1240
原创 LangGraph新手必看:构建顺序执行图
本文详细介绍了如何使用LangGraph构建顺序执行图,通过普通边(Edge)连接多个节点(Node)来实现线性任务流程。
2025-06-04 20:11:57
706
原创 从单节点到多输入:构建你的第一个LangGraph图
通过一个单节点图示例,展示了如何定义状态、创建节点函数、构建和运行图。接着进阶到多输入图的构建,演示了处理不同类型输入的方法,包括整数列表和字符串,并生成包含计算结果和个性化消息的输出。文章强调使用TypedDict定义状态的优势,包括类型安全、代码可读性和调试便
2025-06-04 20:10:17
967
原创 LangGraph Core Concepts一网打尽 (State, Node, Edge & More!)
摘要:LangGraph 是一个专为构建可定制、有状态、可循环 AI 应用的 Python 库,通过基于图的架构简化复杂工作流设计。其核心组件包括:状态(共享数据结构)、节点(执行单元)、图(执行蓝图)、边(流程控制)和条件边(动态路由)。特殊元素如起点/终点标记流程边界,工具节点执行特定功能,StateGraph 类管理整体结构。消息机制(如 HumanMessage/ToolMessage)标准化通信,而 Runnable 接口提供模块化构建能力。该框架通过可视化流程编排,使多步骤 AI 代理开发更清晰
2025-06-03 22:58:36
593
原创 别急着写Agent,先搞懂LangGraph的类型注解
**摘要:**类型注解是LangGraph构建AI应用的基础,尤其在定义状态(State)时至关重要。文章解释了类型注解的核心价值——提高类型安全、代码清晰度和调试效率,并介绍了LangGraph常用的类型注解:TypedDict(定义状态结构)、Union(支持多种类型)、Optional(允许空值)、Any(通用类型)和Lambda(简洁逻辑)。通过实战示例展示了如何定义聊天状态,强调类型注解是编写健壮代码的关键,为构建复杂AI应用奠定基础。掌握这些技巧能有效避免运行时错误,提升开发效率。
2025-06-03 22:57:18
731
原创 用LlamaIndex构建AI智能体:ReAct模式实战
推理:分析问题并制定解决方案行动:执行具体的操作步骤观察:评估执行结果思考:根据观察结果调整策略# 自定义推理格式化器system_header="你是一个专业的助手,擅长解决复杂问题。",system_footer="记住要逐步思考并使用工具。# 创建带有自定义推理的智能体llm=llm,ReAct模式的基本原理如何构建基础工具集创建和配置ReAct智能体在下一篇文章中,我们将探讨如何使用LlamaParse处理复杂的PDF文档,进一步提升文档处理能力。
2025-01-06 21:31:43
397
原创 LangChain 入门指南:基于 Chat Model 构建 AI 对话系统
Chat Models 是 LangChain 中用于处理对话的核心组件。维护对话上下文理解不同角色的输入生成连贯的对话响应通过本文,我们从基础使用入手,逐步深入到更复杂的应用场景。在下一篇文章中,我们将深入探讨PromptTemplate的用法。学习到如何利用PromptTemplate来优化你的提示设计,从而提升模型的响应质量和准确性。我还会分享一些实用的案例和技巧,帮助你在实际应用中更好地发挥LangChain的潜力。
2025-01-05 15:07:28
802
原创 LlamaIndex与可观测性:使用Phoenix实现系统监控
可观测性(Observability)是指从系统的外部输出来理解系统内部状态的能力。监控系统性能追踪请求流程诊断潜在问题优化系统表现。
2025-01-05 11:20:00
487
原创 LlamaIndex进阶:构建完整的RAG检索增强生成管道
文档加载和处理向量存储检索器(Retriever)响应合成器(Response Synthesizer)后处理器(Postprocessor)合适的向量存储选择优化的检索策略高效的响应合成完善的后处理机制理解RAG架构的核心组件实现基础的RAG管道进行性能优化和监控解决常见问题在下一篇文章中,我们将探讨如何使用Phoenix实现系统监控,进一步提升RAG系统的可观测性。
2025-01-03 20:52:27
693
原创 深入理解LlamaIndex的Chat Engine:构建智能对话系统
支持上下文记忆提供多种对话模式可以自定义对话风格支持流式输出多种对话模式满足不同需求灵活的配置选项强大的上下文管理能力易于集成和扩展在下一篇文章中,我们将探讨如何构建完整的RAG检索增强生成管道,进一步提升对话系统的性能。
2025-01-02 20:19:38
670
原创 LlamaIndex入门:10分钟搭建你的第一个文档问答系统
通过这个简单的示例,我们实现了一个基础的文档问答系统。LlamaIndex强大之处在于它的简单性和扩展性,你可以基于这个基础版本:添加更多文档格式支持实现更复杂的问答逻辑集成到现有的应用中这只是LlamaIndex功能的冰山一角,在接下来的系列文章中,我们将探索更多高级特性和应用场景。
2025-01-01 14:43:27
997
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人