DeepSeek+扣子Coze:1分钟生成xhs爆款单词视频,工作流(二)

扣子制作过程拆解

下面拆解扣子制作过程,共有3大步:

  • 第一步、创建生图工作流

  • 第二步、创建单词工作流
  • 第三步、搭建智能体

下面我将逐步介绍每一步。

一、创建生图工作流

生成一个图片,示意如下:

创建一个工作流,我的命名是【danci_shengtu】

整体工作流如下:

1、开始

输入2个参数:图片风格style,单词的中文翻译zhongwen。如真实风格、狮子。

2、循环

循环类型选择无限循环。这种类型配合【终止循环】使用,稍后会提到。

输出参数在循环介绍完之后再介绍。

2-1生成图片提示词

进入循环体,第1个节点是生成图片提示词,输入style、zhongwen,让大模型生成后面要生成图片的提示词。

提示词:

角色

你是一个专注于为中国儿童创作简单易懂绘画描述的专家。能够根据用户输入画面里的主体{{zhongwen}}和图片风格{{style}},生成图像描述词汇,描述要符合逻辑且简单直白,有镜头描述,不要增加除画面描述和主体外的其他元素,这样可以让儿童轻松看懂。

技能

技能 1: 生成描述词汇

  1. 当用户输入主体{{zhongwen}}和图片风格{{style}}后,生成符合逻辑且简单易懂的描述词汇,不要增加除主体和画面描述外的其他元素。
  1. 当关键词中没有明显说明是外国时,则说明该关键词说的是中国,你需要在关键词中提到中国,如关键词是母亲,则你的输出中应该提到中国母亲。
  1. 如果关键词没有明确是古代,则默认是现代场景和人物。
  1. 要描述镜头描述,如近景、远景、特写、中景等。
  1. 涉及多个元素时,要描述角色的方位,使画面有空间感。
  1. 当主体{{zhongwen}}为单个人物时,体验人物全身特写。
  1. 描述人物的维度:人物主体、服饰穿搭、发型发色、五官特点、皮肤特点、面部表情、肢体动作、年龄、镜头等
  1. 描述场景的维度:室内户外、大场景、白天黑夜、特定时段、环境光照、天空、光源方向等
  1. 画面中一定要强调主体{{zhongwen}},其他都不要体现
  1. {{zhongwen}}如果是物体,则画面主体是物体,不能是人。{{zhongwen}}如果是人,则画面主体是人,不能是物体。{{zhongwen}}如果是风景,则画面主体是风景描述。

限制:

  • 仅围绕用户输入的主体、画面描述、图片风格生成描述词汇,不涉及其他无关内容。
  • 所输出的描述词汇必须符合简单易懂、符合逻辑的要求。
  • 主体是单个人物时应为人物全身特写。
  • 杜绝出现日本相关的元素。
  • 输出最多70个字。
  • 不要出现与主体无关的其他人或物体。

2-2图像生成

模型选择【通用-Pro】,输入上一步的提示词、图像风格,填写负向提示词。

2-3输出图像地址

将上一步生成的图片地址以消息的方式输出,用于下一个问答节点,让用户确认是否满意该图片。

2-4问答

选择类型为“选项回答”。更多给力项目免费下载,访问:AI创变工坊

  • 当用户选择【满意,继续下一步】,则终值循环,以这个图为最终用户选择的图,输出到结束节点。
  • 当用户选择【不满意,重新生成】或输入了其他文本内容,则进入下一次循环,由于前面设置的是“无限循环”,所以重复前面的过程,直到用户回答满意为止,不再循环。

3、循环输出

最后将所有生成的图像输出,是一个数组。

循环不能只输出用户满意的那一个,只能全部输出。

4、取图片数组的最后一个输出

使用大模型,取出图像数组的最后一张图的url输出,其他不输出。

5、结束

将上步结果输出。

### 构建基于DeepSeekCoze的亚马逊平台高效工作流 #### 选择合适的云服务组件 为了确保工作流能够稳定运行,在面对大规模流量冲击时保持性能,建议采用Amazon Web Services (AWS) 提供的高度可扩展的服务组合。考虑到年初针对DeepSeek发生的持续恶意请求事件[^1],安全性成为首要考虑因素。 #### 部署自动化防护机制 利用AWS Shield Advanced作为DDoS保护措施的一部分,可以自动检测并缓解复杂的分布式拒绝服务(DDoS)攻击。这有助于减轻类似之前发生在DeepSeek上的长时间高频率恶意访问带来的压力。 ```python import boto3 shield_client = boto3.client('shield') response = shield_client.create_protection( Name='deepseek-protection', ResourceArn='arn:aws:elasticloadbalancing:us-west-2:account-id:loadbalancer/app/deepseek-load-balancer/ID' ) ``` #### 整合CI/CD管道与监控工具 通过集成CodePipeline、CodeBuild实现持续集成和部署过程中的自动化测试;同时借助CloudWatch设置自定义警报来实时监测应用程序状态变化情况,及时响应潜在风险。 #### 利用容器化技术优化资源利用率 对于像DeepSeek这样的大型应用来说,Docker镜像是理想的选择之一。它不仅简化了环境配置管理还提高了跨不同基础设施之间的移植性。配合ECS(Elastic Container Service),可以根据实际负载动态调整实例数量从而达到最佳性价比。 ```bash docker build -t deepseek-app . docker tag deepseek-app:latest account.dkr.ecr.us-west-2.amazonaws.com/deepseek-app:latest docker push account.dkr.ecr.us-west-2.amazonaws.com/deepseek-app:latest ``` #### 实施微服务体系架构设计原则 借鉴Coze的经验教训,采取领域驱动设计理念划分业务边界清晰的功能模块,并通过API Gateway对外提供统一接入点。这样做的好处是可以独立开发迭代各个部分而不影响整体稳定性,同时也便于后期维护升级操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI创变工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值