IOU GIOU DIOU CIOU 及代码实现

本文详细介绍了目标检测中常用的IOU, GIOU, DIOU和CIOU概念及其优缺点。IOU是交并比,用于衡量边界框的重合程度。GIOU在IOU基础上解决了不相交时损失为0的问题。DIOU进一步考虑了边界框间的距离,提高了收敛速度。CIOU则综合了重叠面积、中心点距离和长宽比,提供了更全面的评估。文章还给出了相关损失函数的公式,并提及了它们在实际应用中的代码实现。" 93379611,8643150,旋转编码器工作原理与51单片机编程实践,"['51单片机', '传感器', '编码器', '微控制器', '电子工程']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总体发展过程:

IOU 

IOU(交并比)顾名思义就是两个框的交集除以他们的并集。

IOU = \frac{area(C)\bigcap area(G)}{area(C)\bigcup area(G)}

IOU Loss:IOU Loss = 1 -IOU(比较常用) 

IOU 的优点:1.能够很好的反应重合的程度       2.具有尺度不变性

缺点: 当不相交时候loss为0 (IOU Loss = 1 - IOU)

GIOU 

GIOU = IOU - \frac{A^{c}-u}{A^{c}} (-1\leq GIOU \leq 1)

        如图绿色边界框为真实的边界框,红色边界框为网络预测的边界框,蓝色边界框为用最小的矩形把两个边界框给框住。 A^{C}= 蓝色目标边界框面积。u=两个边界框并集的面积。取两个极限的例子,当两个目标边界框重合时,A^{C}- u = 0。此时GIOU = IOU。此时IOU = 1。当两个边界框无穷远时\frac{A^{C}-U}{A^{C}}趋近于1 ,GIOU = IOU - 1,此时IOU = 0,所以此时的GIOU = -1。GIOU的范围在-1到1之间。对比IOU当两个目标框不相交时也能提供损失。

GIOU Loss:1 - GIOU

特殊情况下GIOU会变为IOU:

DIOU:

        IOU和GIOU有两个很大的缺点:1.收敛特别慢   2.回归的不够准确。为此作者提出了DIOU

         DIOU能够更好地反映两个框的相交情况,将其用于计算网络的损失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值