刷题-移动零(力扣283)

本文介绍了一种算法,用于将数组中的所有零元素移动到数组末尾,同时保持非零元素的相对顺序不变。通过两次遍历数组实现:第一次遍历将非零元素移到数组前部;第二次遍历将剩余位置填充为零。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

在这里插入图片描述

解法

先循环遍历,把非零的元素排到数组nums前面,用j来记录非零的下标
然后把j到nums.length的元素全部为0

class Solution {
    public void moveZeroes(int[] nums) {
        if(nums==null)
            return;
        int j=0;
        for(int i=0;i<nums.length;i++){
            if(nums[i]!=0){
                nums[j++]=nums[i];
            }
        }
        for(int k=j;k<nums.length;k++){
            nums[k]=0;
        }

    }
}
<think>好的,用户问的是在力扣LeetCode哪个语言好用。我需要先理解用户的需求。可能用户刚开始,或者想换一种更高效的语言,所以想了解不同编程语言的优缺点。 首先,我应该考虑不同语言在算法中的表现。常见的语言有Python、Java、C++、JavaScript等。每种语言都有其特点,比如Python语法简洁,适合快速实现算法;C++执行速度快,适合需要优化性能的目。 接下来,用户可能的背景是什么?如果是新手,可能更关注学习曲线和代码简洁性,Python会是很好的选择。如果是有一定编程经验的人,可能更看重执行速度或者已经熟悉的语言,比如Java或C++。另外,用户可能对面试中常用的语言有需求,比如有些公司可能更倾向于特定的语言。 然后,我需要分析各个语言的优缺点。比如Python的库函数丰富,代码简短,但速度可能不如C++。Java有强大的标准库,但代码量相对较多。C++在STL的支持下效率高,但语法复杂,容易出错。JavaScript适合前端开发者,但在处理某些数据结构时可能不如其他语言方便。 还要考虑用户的长期目标。如果用户准备面试,可能需要选择与目标公司技术栈相关的语言。比如,面后端职位可能用Java或C++,而数据科学或全栈可能用Python或JavaScript。 另外,社区支持和资源也是因素。Python在LeetCode上有大量解和讨论,可能更容易找到参考资料。而C++的解同样丰富,但可能需要更深入的理解才能灵活运用。 最后,总结推荐,给出不同场景下的建议,并强调根据个人情况选择的重要性。同时提醒用户,语言只是工具,算法数据结构的知识才是核心。</think>在力扣LeetCode时,编程语言的选择需结合算法实现效率、代码简洁性和个人技术栈综合考虑。以下是主流语言的对比分析及推荐场景: --- ### 一、**Python:新手友好型首选** **核心优势** 1. **语法简洁**:天然贴近伪代码,例如列表推导式: ```python res = [x**2 for x in nums if x % 2 == 0] # 一行完成筛选+平方操作 ``` 2. **内置高阶工具**: - 堆操作:`heapq.nlargest()` - 排列组合:`itertools.permutations()` - 快速字典:`collections.defaultdict` 3. **动态类型优势**:无需声明变量类型,快速测试边界条件 **时间复杂度陷阱** 虽然Python代码简洁,但需注意: - 递归深度限制(默认1000层) - 某些操作的时间复杂度高于其他语言(例如字符串拼接) **适用目**:DFS/BFS、动态规划、贪心算法等逻辑密集型目 **推荐指数**:★★★★★ --- ### 二、**C++:算法竞赛选手的选择** **性能优势** 1. **底层控制**:手动管理内存,避免隐式消耗 2. **STL强力支持**: ```cpp priority_queue<int> max_heap; // 大顶堆直接可用 unordered_map<string, int> hashmap; // 哈希表高效实现 ``` 3. **位运算优化**:直接内存操作适合状态压缩目 **学习曲线** - 指针和引用易引发错误(例如链表中的指针操作) - 需要掌握常用STL容器的时间复杂度 **适用目**:图论(Dijkstra)、滑动窗口优化、位操作 **推荐指数**:★★★★☆ --- ### 三、**Java:大厂面试常备语言** **工程化优势** 1. **标准库完善**: ```java TreeMap<Integer> sortedMap = new TreeMap<>(); // 红黑树实现的有序映射 Deque<TreeNode> deque = new ArrayDeque<>(); // 双端队列 ``` 2. **强类型安全**:编译期错误检查减少运行时意外 **代码冗长问** - 简单的输入输出需要`Scanner`/`BufferedReader` - 缺少元组支持(需自定义类或使用`Map.Entry`) **适用目**:设计(LRU)、树结构操作、并发问 **推荐指数**:★★★☆☆ --- ### 四、**语言对比决策表** | 维度 | Python | C++ | Java | |--------------|-----------------|----------------|----------------| | **代码量** | 最少(约1/3) | 中等 | 最多 | | **执行速度** | 最慢(约10倍) | 最快 | 中等 | | **调试难度** | 简单 | 复杂(段错误) | 中等 | | **面试优势** | 通用性强 | 系统岗偏爱 | 后端岗常见 | --- ### 五、**进阶建议** 1. **混合使用策略**: - 快速验证思路 → Python - 优化性能 → C++ 2. **关注语言特性**: - Python的`__lt__`方法重载(自定义堆排序) - C++的移动语义(避免深拷贝) - Java的`StringBuilder`(字符串拼接优化) 3. **企业匹配原则**: - 目标公司技术栈(如Facebook偏好C++) - 岗位要求(如机器学习岗倾向Python) --- ### 六、**终极建议** - **初学者**:无脑选Python,专注算法逻辑 - **求职冲刺**:选择与目标岗位匹配的语言 - **竞赛选手**:C++为主,Python辅助快速验证 **核心原则**:算法思想 > 语言特性,建议先用最熟悉的语言突破中等难度目,再针对性强化其他语言。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值