- 博客(7)
- 收藏
- 关注
原创 “Dynamic Head” 解读:注意力机制如何统一目标检测头?
这篇论文主要提出了一种名为“Dynamic Head”的目标检测头框架,通过整合多种注意力机制来统一目标检测中的尺度感知、空间感知和任务感知,从而显著提高检测头的表征能力,且不增加计算开销。代码:https://github.com/microsoft/DynamicHead |论文:https://arxiv.org/pdf/2106.08322。
2024-12-11 14:52:23
1930
原创 DETR 从单兵作战到协作混合训练:Co-DETR
用于提高Transformer解码器中的交叉注意力学习效率。发现传统检测器中的anchor是密集排列的,且能够提供dense且尺度敏感的监督信息。尝试将传统检测器中的anchor作为query来为attention的学习提供足够的监督。上一步,辅助的检测头已经分配好了各自的正样本anchor及其匹配的ground-truth。直接继承辅助检测头的标签分配结果,将这些正样本anchor转化为正样本query送到decoder中,在loss计算时无需二分匹配,直接使用之前的分配结果。
2024-12-09 11:17:29
960
原创 Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation 阅读笔记
论文地址:Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation
2024-06-20 21:12:11
1133
原创 Weakly Supervised Instance Segmentation for Videos with Temporal Mask Consistency 阅读笔记
弱监督实例分割的优点:减少训练模型所需的标注成本。现有的仅依赖于图像级类标签的方法主要存在由对象的部分分割缺少对象预测导致的错误。针对部分分割,提出使用flowIRN在训练过程中有效地融合运动信息。针对缺少实例,提出MaskConsist,利用时间一致性,并在训练期间将稳定的掩码预测传输到相邻帧。IRNet(IRN)具有两个分支的网络,分别预测:指向包含像素的实例中心的每像素位移向量 (类不可知实例映射)指示像素是否位于对象边界上的每像素边界可能性(一对像素之间的语义亲和力)
2024-06-20 20:54:17
1923
原创 Windows11-YOLOX-TensorRT部署
环境:Windows11-CUDA11.1-cudnn8.9.7-PyTorch1.9.1+cu111-TensorRT8.5.2.2-Python3.8。
2024-06-20 18:47:26
2004
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人