CNN入门mnist数据集运行环境搭建(安装Python,Pycharm,Anaconda,Tensorflow,CNN代码)

本文介绍了如何搭建用于运行CNN的环境,包括Python 3.8的安装、PyCharm编辑器的下载与安装、环境变量配置、Anaconda的安装以及Tensorflow的安装。通过详细教程链接,读者可以一步步跟随操作,最后尝试运行CNN模型在MNIST数据集上的训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装环境运行大致步骤:

  1. Python安装:选择3.8,安装教程具体可查看:https://blog.csdn.net/liming89/article/details/109632064?ops_request_misc=&request_id=&biz_id=102&utm_term=pycharm%E5%AE%89%E8%A3%85%E6%95%99%E7%A8%8B&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-7-.pc_search_result_before_js&spm=1018.2226.3001.4187
    下载官网:https://www.python.org/downloads/

在这里插入图片描述

  1. Pycharm 编辑器下载安装:下载官网:
    https://www.jetbrains.com/pycharm/download/#section=windows
    安装教程与Python安装教程在一起

  2. 环境变量配置:配置教程:
    https://www.cnblogs.com/huangbiquan/p/7784533.html

  3. 安装Anaconda:选择Anaconda3,安装教程具体可查看:
    https://blog.csdn.net/u010210864/article/details/94580873
    下载官网:https://www.anaconda.com/products/individual
    在这里插入图片描述

  4. 按步骤4教程安装Tensorflow:

  5. 试运行CNN训练mnist数据集的代码

# -*- coding: utf-8 -*-
# 使用卷积神经网络训练mnist数据集
import gzip

from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Conv2D, MaxPooling2D, Flatten, Reshape
import numpy as np
from sklearn.metrics import classification_report
import datetime

'''
# 装载数据集(从网上下载)
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
'''


# 装载数据集(本地导入)
def load_data():
    path = r"E:\PythonProject\CNN\MNIST_data\mnist.npz"
    f = np.load(path)
    train_images, train_labels = f['x_train'], f['y_train']
    test_images, test_labels = f['x_test'], f['y_test']
    f.close()
    return (train_images, train_labels
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值