python-skimage.io,filters,transform

python-skimage.io,filters,transform学习笔记

目录

1.skimage.io——图片读取和显示

2.skimage.filters——简单滤波处理

(1)sobel算子,用于检测边缘

(2) 大津法实现

 (3)滤波

 [1]gabor滤波

[2]gaussian滤波

[3]median滤波

3.skimage.transform——缩放和旋转

(1)图像缩放

 (2)图像旋转


1.skimage.io——图片读取和显示

from skimage import io
img = io.imread( "D:\desktop\imgs\lena.jpg" )
io.imshow(edge) 
#import matplotlib.pyplot as plt
#plt.show() #pycharm可能要加上plt才能显示

2.skimage.filters——简单滤波处理

(1)sobel算子,用于检测边缘

函数格式为:skimage.filters.sobel(image, mask=None)

from skimage import io,filters
img = io.imread( "D:\desktop\imgs\lena.jpg" )
#img = img[:,:,0] #可转灰度图
edge = filters.sobel(img)#sobel滤波操作
io.imshow(edge)
原图
不经灰度处理的sobel算子处理结果
灰度处理后的sobel算子处理结果

 此外,filters模板中还有roberts算子,prewitt算子,scharr算子等算子,功能与sobel类似。调用格式相同。

edges = filters.roberts(img)
edges = filters.prewitt(img)
edges = filters.scharr(img)

(2) 大津法实现

大津法又称大类间方差法或全局OTSU算法,基本原理是计算像素的灰度值对应的最大类间方差值,取类间方差值取最大时对应的阈值为最佳阈值,根据最佳阈值进行图像二值化分割,划分前景和背景。

from skimage import io,filters
img = io.imread( "D:\desktop\imgs\lena.jpg" )
thresh = filt
skimage是一个Python图像处理库,它提供了许多常用的图像处理函数和工具。它基于NumPy和SciPy,提供了一些高级的图像处理算法和工具,如图像滤波、形态学处理、边缘检测、图像分割等。 在使用skimage时,通常需要先导入skimage库: ```python import skimage ``` skimage库中包含了许多子模块,每个子模块都提供了不同的图像处理函数和工具。以下是一些常用的子模块: - io:用于读写图像文件 - color:用于颜色空间转换和颜色空间操作 - filters:用于图像滤波和卷积操作 - transform:用于图像变换和几何变换 - morphology:用于形态学处理 - feature:用于特征提取和描述子计算 - segmentation:用于图像分割 以下是一些常用的skimage函数和工具: 1. 读取图像文件 ```python from skimage import io img = io.imread('image.jpg') # 读取图像文件 ``` 2. 显示图像 ```python from skimage import io img = io.imread('image.jpg') io.imshow(img) # 显示图像 io.show() ``` 3. 颜色空间转换 ```python from skimage import color img = io.imread('image.jpg') gray_img = color.rgb2gray(img) # 将RGB图像转换为灰度图像 ``` 4. 图像滤波 ```python from skimage import filters img = io.imread('image.jpg') blurred_img = filters.gaussian(img, sigma=1.0, multichannel=True) # 高斯滤波 ``` 5. 形态学处理 ```python from skimage import morphology img = io.imread('image.jpg') eroded_img = morphology.erosion(img) # 腐蚀操作 ``` 6. 边缘检测 ```python from skimage import feature img = io.imread('image.jpg') edges = feature.canny(img, sigma=1.0) # Canny边缘检测 ``` 7. 图像分割 ```python from skimage import segmentation img = io.imread('image.jpg') labels = segmentation.slic(img, n_segments=100, compactness=10) # SLIC图像分割 ``` 以上是skimage库中的一些常用函数和工具,使用这些函数和工具可以方便地进行图像处理和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值