在ultralytics/utils/metrics.py文件中 修改各个指标的影响权重
def fitness(self):
"""Model fitness as a weighted combination of metrics."""
w = [0.25, 0.25, 0.35, 0.15] # weights for [P, R, [email protected], [email protected]]
return (np.array(self.mean_results()) * w).sum()
P, R, [email protected], [email protected],并且设权重为w = [0.25, 0.25, 0.35, 0.15]了,如果需要修改,就像我一样先改上面的权重。再按照下面修改: 设置你要评估的指标
def mean_results(self):
"""Mean of results, return mp, mr, map50, map."""
return [self.mp, self.mr, self.map50, self.map75]
还是这个文件,代码在上面,改成你需要的指标。在这就已经改完了。
在ultralytics/models/yolo/detect/val.py文件中 训练结束时输出你想要的指标结果
def get_desc(self):
"""R