yolov8 选择并保存best.pt的依据 (附带修改记录,) + 设置早停

在ultralytics/utils/metrics.py文件中 修改各个指标的影响权重

    def fitness(self):
        """Model fitness as a weighted combination of metrics."""
        w = [0.25, 0.25, 0.35, 0.15]  # weights for [P, R, [email protected], [email protected]]
        return (np.array(self.mean_results()) * w).sum()

P, R, [email protected], [email protected],并且设权重为w = [0.25, 0.25, 0.35, 0.15]了,如果需要修改,就像我一样先改上面的权重。再按照下面修改:  设置你要评估的指标


    def mean_results(self):
        """Mean of results, return mp, mr, map50, map."""
        return [self.mp, self.mr, self.map50, self.map75]

还是这个文件,代码在上面,改成你需要的指标。在这就已经改完了。

在ultralytics/models/yolo/detect/val.py文件中     训练结束时输出你想要的指标结果

    def get_desc(self):
        """R
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值