(一)MATLAB
在使用MATLAB时,若有两个矩阵a和b,代码c=a(b)可得到一个与b相同大小的矩阵c,c矩阵元素来自于a。可理解为将a中各元素按列依次标序号,b存储的是c中各元素在a中所对应的序号。
>> a = [4,5,3,4,6,8,7,562,1,86]
a =
4 5 3 4 6 8 7 562 1 86
>> b = [2,5,7,4;1,3,6,2]
b =
2 5 7 4
1 3 6 2
>> c = a(b)
c =
5 6 7 4
4 3 8 5
B =repmat(A,m,n)是一个处理大矩阵且内容有重复时使用。其功能是以A的内容堆叠在(MxN)的矩阵B中,B矩阵的大小由MxN及A矩阵的内容决定,如果A是一个3x4x5的矩阵,有B = repmat(A,2,3)则最后的矩阵是6x12x5。
(二)python语法
1.矩阵处理函数(以列向量C,C1、行向量R、二维矩阵A和B为例)
矩阵转置——A.transpose()或A.T或transpose(A)
矩阵共轭转置——A.T.conjugate()或A.H(仅适用于数据类型为matrix的矩阵,即A的数据类型为matrix)
水平拼接矩阵——numpy.hstack((A,B))或
创建单位矩阵——numpy.ones((2,3))
离散傅里叶变换——numpy.fft.fft(C)
行、列向量进行矩阵相乘——numpy.multiply(C,R),即R*C
向量进行元素对应相乘——numpy.multiply(C,C1)或C*C1
注:此文章参考多方资料,同时结合本人编程经验。如有侵权,请联系修改或删除。