时间序列数据预测:16种经典统计学模型

目录

ARIMA模型家族:从平稳到季节性

1.自回归模型 (Autoregressive Model, AR)

2.移动平均模型 (Moving Average Model, MA)

3.自回归移动平均模型 (Autoregressive Moving Average Model, ARMA)

4.自回归积分移动平均模型 (Autoregressive Integrated Moving Average Model, ARIMA)

5.季节性自回归积分移动平均模型 (Seasonal ARIMA, SARIMA)

指数平滑法 (Exponential Smoothing, ES) 与状态空间模型 (ETS)

6.指数平滑法 (Exponential Smoothing, ES)

7.指数平滑状态空间模型 (Exponential Smoothing State Space Model, ETS)

多变量统计模型

8.向量自回归模型 (Vector Autoregression, VAR)

9.向量自回归移动平均模型 (Vector Autoregressive Moving Average, VARMA)

10.向量误差修正模型 (Vector Error Correction Model, VECM)

波动率模型

11.自回归条件异方差模型 (Autoregressive Conditional Heteroskedasticity, ARCH)

12.广义自回归条件异方差模型 (Generalized ARCH, GARCH)

其他结构化与非参数模型

13.贝叶斯结构时间序列模型 (Bayesian Structural Time Series, BSTS)

14.动态线性模型 (Dynamic Linear Model, DLM)

15.马尔可夫链预测模型 (Markov Chain Prediction Model)

16.模糊时间序列模型 (Fuzzy Time Series Model)


时间序列数据是由一系列按时间顺序排列的数据点组成,蕴含着系统随时间演变的动态信息。时间序列预测的核心任务是基于历史数据揭示其内在规律——如趋势(Trend)、季节性(Seasonality)、周期性(Cyclicity)和随机噪声(Noise)——并利用这些规律来推断未来的数值。

算法的选择直接决定了预测的准确性和可靠性。从最初的自回归模型到如今的Transformer架构,算法的演进体现了我们对数据复杂性认识的不断深化。

统计学模型构成了时间序列预测的理论基础。它们通常基于一系列关于数据生成过程的假设,模型结构清晰,结果易于解释。

ARIMA模型家族:从平稳到季节性

ARIMA及其衍生模型是时间序列分析中最著名和最广泛应用的统计方法之一。它们的演进路径清晰地展示了统计学家如何逐步扩展模型以适应更复杂的数据特征。

该家族的演进始于两个基本构件:自回归模型(AR)和移动平均模型(MA)。二者结合构成了ARMA模型,专门处理平稳时间序列。为了处理现实世界中普遍存在的非平稳数据,ARMA模型引入了差分(Integration)操作,演变为ARIMA模型。最后,为了捕捉数据中的季节性循环,ARIMA模型进一步扩展,加入了季节性项,形成了功能最全面的SARIMA模型。

1.自回归模型 (Autoregressive Model, AR)

AR模型假设当前时间点的值是其过去若干个时间点值的线性组合,加上一个随机误差项。它关注的是时间序列与其自身历史值之间的关系。模型由阶数 p 定义,表示预测当前值时所依赖的历史值的数量。

  1. 适用范围: 主要适用于单变量、平稳的时间序列。
  2. 算法类型: 统计模型。
  3. 调参复杂度: 简单。主要调整阶数 p,可通过自相关函数(ACF)和偏自相关函数(PACF)图辅助确定。
  4. 优势:模型简单,易于理解和解释,适合描述具有短期记忆性的过程。
  5. 劣势与限制:要求数据平稳,无法处理趋势和季节性。仅利用历史信息,无法捕捉外部冲击(即随机误差的结构)。

2.移动平均模型 (Moving Average Model, MA)

MA模型不直接使用过去观测值的线性组合来预测,而是使用过去若干个预测误差(也称为随机冲击或新息)的线性组合。它关注的是随机误差项的累积效应对当前值的影响。模型由阶数 q 定义,表示预测时所依赖的历史误差项的数量。

  1. 适用范围:单变量、平稳时间序列。
  2. 算法类型:统计模型。
  3. 调参复杂度:简单。主要调整阶数 q,同样可通过ACF和PACF图辅助确定。
  4. 优势:能有效模拟经历短暂冲击后恢复均衡的事件。
  5. 劣势与限制:要求数据平稳,且无法单独处理具有自回归特性的序列。

3.自回归移动平均模型 (Autoregressive Moving Average Model, ARMA)

ARMA模型是AR模型和MA模型的结合,它假设当前值同时依赖于其自身的历史值和历史预测误差。这使其能够捕捉更复杂的数据动态,同时具有长期和短期的依赖性。

  1. 适用范围:单变量、平稳时间序列。
  2. 算法类型:统计模型。
  3. 调参复杂度:中等。需要同时确定 p 和 q 两个阶数。
  4. 优势:比单一的AR或MA模型更具普遍性和灵活性,通常能用更少的参数拟合数据。
  5. 劣势与限制:最核心的限制是其对平稳性的严格要求,这在许多实际应用中难以满足。

4.自回归积分移动平均模型 (Autoregressive Integrated Moving Average Model, ARIMA)

ARIMA模型的核心创新在于引入了“积分”(Integrated)项,即差分操作。对于非平稳的时间序列(如含有趋势),ARIMA模型首先通过一次或多次差分将其转化为平稳序列,然后对该平稳序列应用ARMA模型进行建模。模型由三个参数 (p, d, q) 定义,其中 d 是差分的阶数。

  1. 适用范围:单变量、非平稳但可通过差分平稳化的时间序列。
  2. 算法类型:统计模型。
  3. 调参复杂度:中等。需要确定 p, d, q 三个参数。d 通常为1或2。
  4. 优势:极大地扩展了ARMA模型的应用范围,使其能够处理大量含有趋势的非平稳经济和商业数据。
  5. 劣势与限制:虽然能处理趋势,但对复杂的季节性模式和非线性趋势的适应性较差 。差分过程可能会丢失部分信息。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ericliu0625

感谢鼓励,我会创作更多优质内容

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值