
练手
文章平均质量分 90
白鸟坠入密林
钱塘江上潮信来,今日方知我是我。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
XGBoost回归实战:一个Kaggle上的例子
任务说明:实际上是一个回归问题,标签变量为。以下主要使用``xgboost`进行预测。这里好多好多频数图,没搬上来…和数值型特征,模型评估指标为。以便考虑是否取对数操作。原创 2024-12-05 20:16:54 · 1307 阅读 · 0 评论 -
Transformer多步时序预测:多变量输入,单变量输出
只使用encoder,然后把encoder的输出展平,后接线性层进行输出,理解为encoder只是把原始特征进行变换。感觉在ETTh1数据集上使用transformer效果一般。原创 2024-10-28 19:59:23 · 1466 阅读 · 3 评论 -
Transformer时间序列预测:多变量输入与多变量输出
使用100个时间步的多变量时间序列预测未来20个时间步的目标序列。自变量有10个,因变量也有10个。train_data是一个列表,元素为元组,元组有两个元素,第一个为特征,第二个为标签。这里的解码器用一个全连接层表示,然后再加一个全连接层得到最后输出。上面图形是对第一个目标序列的预测结果,最小。以下代码在GPU上运行成功。原创 2024-10-24 14:44:40 · 2767 阅读 · 1 评论 -
使用RNN、LSTM和Transformer进行时间序列预测
指在一个样本中(共50个时间步)的时间步位置,这里的。原创 2024-10-18 10:58:01 · 1555 阅读 · 0 评论 -
DataWhale市场博弈和价格预测
气象状况对出清价格有较大影响节假日对出清价格有较大影响,易于出现负值总负荷与出清价格线性关系很高,但总体呈现分段线性的特征不同月份/小时下的出清价格受市场竞争影响较大碳中和不断发展,火电价格有总体下降的趋势本案例旨在提供探索性数据分析的一般步骤。可以自行尝试使用seaborn,plotly等python库做进一步的可视化,挖掘序列的更多信息,从而指导后续的特征构造。回想之前提到的规则:如果自身持有资本不为0,将1单位资本随机给一个其他的人。检查自己的财富状况,如果为0,则什么也不做。原创 2024-08-05 17:43:49 · 969 阅读 · 0 评论 -
1 线性回归练习与2 逻辑回归、线性判别二分类练习
类内散布矩阵。原创 2024-07-24 19:11:18 · 1325 阅读 · 0 评论 -
2024datawhale电力需求预测挑战赛
赛题数据由训练集和测试集组成,为了保证比赛的公平性,将每日日期进行脱敏,用1-N进行标识。即1为数据集最近一天,其中1-10为测试集数据。数据集由字段id(房屋id)、 dt(日标识)、type(房屋类型)、target(实际电力消耗)组成。原创 2024-07-22 14:18:53 · 1279 阅读 · 0 评论