自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(41)
  • 收藏
  • 关注

原创 第5章:vuex

我们多配置两个数据,分别为school和subject,如下:当使用state的很多数据时候,会多次调用store.state.xxx,这样很麻烦。最简单的方式是用计算属性解决,但是要程序员一次一次的配置,也会很麻烦。vuex的设计者提供了mapState方法,它可以帮我们批量生成粉色框的代码,因为它们共同点都是从state读取数据。

2025-03-06 23:49:13 487

原创 第四章 Vue 中的 ajax

Vue脚手架配置代理方式一优点:配置简单,请求资源时直接发给前端(8080)即可。缺点:不能配置多个代理,不能灵活的控制请求是否走代理。工作方式:若按照上述配置代理,当请求了前端不存在的资源时,那么该请求会转发给服务器(优先匹配前端资源)方式二proxy: {'/api1': { // 匹配所有以 '/api1' 开头的请求路径target: 'http://localhost:5000', // 代理目标的基础路径// ws: true, //用于支持websocket。

2025-02-16 23:20:45 1446

原创 第3章 使用 Vue 脚手架

第一步(仅第一次执行):全局安装@vue/cli。使用命令:win + r,并打开 cmd使用命令:npm install -g @vue/cli,进行下载这个过程可能会发生警告,可以直接忽略。如果卡住了,则直接按回车即可如图所示,安装完毕第二步:切换到你要创建项目的目录,然后使用命令创建项目在桌面创建项目,使用命令:vue create xxxx此时会出现如图所示的选项:要求选择Vue的版本(不是脚手架的版本)我们选择Vue 2开始加载,如果卡住了,按回车即可成功创建项目第三步:启

2025-02-09 21:07:20 1162

原创 论文阅读:Recipe for a General, Powerful, Scalable Graph Transformer

Graph Transformers(GTs)通过允许节点对图中所有其他节点进行注意(全局注意力),从而缓解了与稀疏消息传递机制相关的基本限制。由于图结构不像图像一样有着标准化的位置关系,因此全局注意力位置编码要求比较高标准的全局注意力会导致图中有NNN个节点和EEE条边时的二次计算开销ON2O(N^2)ON2,这使得GTs仅限于处理最多几百个节点的小型图。在本文中,提出了一种构建通用、强大且可扩展的图变换器(GPS)的方案。

2024-12-08 18:39:19 1674 2

原创 Hyperbolic Representation Learning: Revisiting and Advancing 论文阅读

在利用双曲空间时,目标是提取数据中固有的层次信息。如下图所示,预期的学习目标包括优化父节点与其各自后代节点的关系,即将根节点推向双曲空间原点,同时将叶节点放置在离双曲空间原点更远的位置。本文的贡献:我们提出了一种位置跟踪策略,揭示了双曲学习过程与传统理解之间的显著差异,为双曲表示学习过程提供了新的视角。引入了一种新颖的方法,用于从双曲嵌入中推断隐式的层次结构。它直接从嵌入中提取层次信息,省去了额外输入或注释的需求。提出了一种简单而有效的方法,利用推断出的层次结构推进双曲表示学习。

2024-12-08 11:15:00 1498 1

原创 一文搞懂Transformer和注意力机制:3Blue1Brown之Transformer的核心:注意力机制

对于查询和键矩阵,有12288列,对应了初始嵌入维度;首先是右边第一个矩阵维度减少,为128×12288矩阵,它的作用可以看作是将较大的嵌入向量映射为低维度的嵌入向量(12288→128),称这个矩阵为。而左边的矩阵,为12288×128的矩阵,它的作用是:将低维度的嵌入重新映射为高维的嵌入(128→12288),称为。的操作,我的理解是,注意力机制一般会有Add & Norm,而Add代表残差连接,残差连接完成了。通过上述步骤操作,已经知道词之间的相关性(圆圈越大,值越大,相关性越强,矩阵左下方全0)

2024-11-21 20:08:44 555

原创 MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems

近年来,图神经网络(GNN)被用于改进协同过滤推荐系统。通过将用户和项目的交互建模为图,GNN能够将图结构信息融合进嵌入中,以提高推荐性能。典型的基于GNN的推荐模型有PinSage、NGCF和LightGCN,它们已在Web规模的应用中取得了显著的成功。负采样问题。在GNN-based推荐系统中,负采样是一项关键任务。负采样是指从未与用户交互的项目中挑选样本作为负样本,用于训练模型。然而,传统的负采样方法通常使用均匀分布来采样负样本,这可能导致模型的学习过程过于简单,不能有效地提升模型性能。

2024-11-14 15:09:30 1140

原创 DGL之copy_e和copy_u

这个函数的作用是从边的特征字段 e 中复制数据,并将其传递到输出消息字段 out 中。简单来说,就是将指定的边特征复制到消息中,供后续的节点更新使用。举个例子,对于边0 → 1,将源节点0的 n_feat=20信息复制给该边,并用消息 m保存。的指定特征字段(u)复制数据到输出消息字段(out)

2024-11-07 11:29:48 391

原创 DGL库之dgl.function.u_mul_e(代替dgl.function.src_mul_edge)

一个用于计算消息传递的内置函数,它通过对源节点(u)和边(e)的特征执行逐元素(element-wise)乘法操作来生成消息。如果源节点和边的特征形状相同,则直接进行逐元素乘法;使用 dgl.function.u_mul_e 计算消息,在每条边上,使用 u_mul_e 函数计算消息,消息是节点特征和边特征的逐元素乘积。dgl.function.u_mul_e代替了dgl.function.src_mul_edge。send_and_recv函数发送和接收消息,每个节点的特征通过其入边上的消息来更新。

2024-11-06 22:05:15 711

原创 DGL 图转 PyG 图

已知DGL创建的同构图,转换为PyG的同构图。已知DGL创建的异构图,转换为PyG的异构图。

2024-10-25 23:43:28 430

原创 DGL库之HGTConv的使用

指示输入图的节点和边是否已经按照类型排序。如果输入图是预排序的,则前向传播可能会更快。也可以使用 reorder_graph() 方法手动重新排序节点和边。其形状应为 (num_nodes, in_size),num_nodes 是节点数量,in_size 是输入特征的维度。: 一个 1D 整数张量,表示节点类型。其形状应为 (num_nodes,),对应每个节点的类型索引。: 一个 1D 整数张量,表示边类型。其形状应为 (num_edges,),对应每条边的类型索引。

2024-10-10 20:34:16 1465 2

原创 图神经网络之异构图转同构图

对于节点特征,可以看到矩阵的行为节点数,列为特征维度。对于异构图创建,可以看。

2024-10-09 19:51:30 693

原创 DGL库之创建heterogeneous graph(异构图)

【代码】DGL库之创建异构图。

2024-10-09 16:22:25 941

原创 图神经网络DGL库之消息传递

调用节点计算的接口是update_all(),它在单个API调用里合并了消息生成、消息聚合和节点特征更新。update_all的参数是。经过了消息生成、消息聚合和节点特征更新过程,将新特征h更新到节点的特征字典中。reduce函数采用单个参数节点nodes。该消息传递方式将源节点的特征和边的特征进行聚合。可以用来访问节点收到的信息,然后做一些运算。运行时,以(0,1)边为例,

2024-10-01 14:44:54 870

原创 论文阅读:A Generalization of Transformer Networks to Graphs

作者提出了一种适用于任何图的GraphTransformer。这种结构不能很好利用图的连通归纳偏置(graph connectivity inductive bias)当图的拓扑结构很重要且尚未编码到节点特征时,表现很差注意力机制是图中每个节点的邻域连通性的函数positional encoding用拉普拉斯特征向量表示Batch Normalization代替Layer Normalization,优点:训练更快,泛化性能更好。

2024-09-22 17:46:20 1729 1

原创 论文阅读与分析:Few-Shot Graph Learning for Molecular Property Prediction

图神经网络最近的成功显着促进了分子特性预测, 推进了药物发现等活动。现有的深度神经网络方法 通常需要每个属性都需要大量的训练数据集,在实验数据有限的情况下(特别是新的分子属性)会损害其性能,这在现实情况中很常见。为此,我们提出了 Meta-MGNN,一种用于小样本分子特性预测的新模型。Meta-MGNN应用分子图神经网络来学习分子表示,并构建用于模型优化的元学习框架。

2024-09-19 20:45:07 1232 1

原创 方向导数和梯度

梯度下降法(Gradient Descent)是一种用于寻找函数极小值的一阶迭代优化算法,又称为最速下降(Steepest Descent)。其几何意义如下图所示:如果要求A点在紫色向量方向上的斜率(红色线圈出来的),则可用方向导数。应尽可能选择适中的学习率,过大会震荡,过小迭代次数会过多,如下所示,学习率为0.2更好。为了等一下方便理解方向导数,将上述的偏导数表示成向量形式。相当于方向导数是偏导数的线性组合。方向改变时,就产生了方向导数。时,若极限存在,则称为函数。的偏导数的几何意义同理。

2024-07-03 18:15:18 1211

原创 Sklearn之朴素贝叶斯应用

sklearn下各种朴素贝叶斯的分类器的原理可看sklearn之各类朴素贝叶斯原理Sklearn基于数据分布以及这些分布上的概率估计的改进,为我们提供了四个朴素贝叶斯的分类器。类含义伯努利分布下的朴素贝叶斯高斯分布下的朴素贝叶斯多项式分布下的朴素贝叶斯补集朴素贝叶斯类别贝叶斯贝叶斯岭回归,在参数估计过程中使用贝叶斯回归技术来包括正则化参数贝叶斯有以下特点贝叶斯是从概率角度进行估计,不需要太多的样本量,极端情况下甚至我们可以使用1%的数据作为训练集,依然可以得到很好的拟合效果。

2024-06-19 23:36:11 1226

原创 sklearn之各类朴素贝叶斯原理

贝叶斯的原理可以看:贝叶斯分类器详解根据这篇文章提到的原理,可知贝叶斯的核心公式是:y=argmaxckP(Y=ck)∏j=1nP(X(j)=x(j)∣Y=ck) (1)y=argmax_{c_{k}}P(Y=c_{k})\prod \limits_{j=1}^{n}P(X^{(j)}=x^{(j)}|Y=c_{k}) ~~(1)y=argmaxck​​P(Y=ck​)j=1∏n​P(X(j)=x(j)∣Y=ck​) (1)”朴素贝叶斯“的多种变形算法的主要区别在于对条件概率的处理上,即:P(

2024-06-19 23:33:50 1487

原创 混淆矩阵-ROC曲线、召回率、精确率、准确率

混淆矩阵的主要性能指标准确率:模型正确分类的样本占总样本数的比例,准确率衡量了模型在所有样本上的整体表现精确率:模型预测为正类别的样本中实际是正类别的概率,精确率衡量了模型在预测为正类别的样本上的准确性召回率:实际为正类别的样本中,正确预测为正样本的概率,召回度衡量了在实际为正样本中正确预测为正样本的预测概率F1分数:精确率和召回率的调和平均数,F1分数衡量了精确率和召回率之间的平衡混淆矩阵和上述性能指标共同提供了对分类模型性能全面的理解,并帮助评估模型的优缺点,进而进一步优化模型机器学习,周志华。

2024-06-16 22:06:51 2471

原创 类别朴素贝叶斯CategoricalNB和西瓜数据集

要对下述的数据集转换成特征矩阵X和标签类别y,则需要认识两种编码。之后会有详细例子,现在先看用法。

2024-06-14 17:52:56 940

原创 第八章:Sysml之状态机图

一个系统(或者系统中的一部分)有时会拥有一系列定义好的状态,在系统操作过程中可以处于那些状态。例如,一个文件可以处于以下状态:Open、Closed、Modified、Unmodified、Encrypted、Unencrypted等等。有的状态只有在其他状态的情境中才有意义。例如,Modified和Unmodified只有在文件处于Open状态的时候才有意义。正式情况下,把Open叫做复合状态。Modified和Unmodified都是Open状态的子状态。没有任何子状态的状态叫做简单状态。

2024-05-30 18:04:03 2243

原创 第七章:Sysml之序列图

序列图是一种行为图;和活动图一样,它表示了系统的一种动态视图,这种视图会说明随着时间推移而发生的行为和事件的序列。交互:模块的各个部分会通过操作调用和异步信号彼此交互,以产生浮现式的行为。行为执行的顺序哪个结构会执行哪种行为哪个结构会触发哪种行为序列图使用时机:需要精确地指定实体之间的交互、系统问题域内的交互或者解决方案域内的交互消息代表的是发送生命线和接收生命线之间的通信。那种通信可能是启动行为、在行为的末尾发送回应、创建生命线或者销毁生命线。

2024-05-30 01:11:04 2378

原创 第六章 Sysml之活动图

节点和边。对象流和控制流。活动中存在三种节点,上面已经说了动作节点和对象节点。使用控制节点,可以引导活动沿着路径执行,而不只是简单的序列动作。控制节点既可以指引活动中控制令牌的流,也可以指引活动中对象令牌的流。初始节点活动终节点流终节点决定节点合并节点分支节点集合节点。

2024-05-29 01:09:58 2707

原创 第五章:Sysml之用例图

(1)用例图的介绍用例图(Use Case Diagram)的一些特点如下:(2)什么是用例在《统一建fe语言参考手册(第二版)》中,用例定义为:​在《编写有效用例》中,用例定义为:​以下是用例的关键点:(3)用例说明书用例说明书在传统上是文字文档。Alistair Cockburn在他的书籍《编写有效用例》中提供了一种很好的用例说明书格式:注意:也可以使用SysML活动图创建图形化的用例说明书。用例图的类别缩写是uc。图的外框代表的模型元素类型可能是以下中的一种:包、模型、模型库、视图。模型有很多种组织方

2024-05-26 22:03:24 1666

原创 第四章:Sysml之内部模块图

IBD可以显示内嵌在其他属性中的属性。内嵌使得可以在单独视图中表示系统层级结构的多个层级。优点:可以看到内嵌组成部分之间的关联关系缺点:IBD可读性变差。建议慎用这个功能。

2024-05-26 16:44:21 2438

原创 第三章:SysML之模块定义图

模块定义图(Block Definition Diagram,BDD)是最常见的一种SysML图。可以在BDD中显示不同类型的模型元素和关系,以说明系统结构的信息。还可以降低修改设计所需要的时间和成本。把出现在BDD中的元素叫做定义元素,模块执行者值类型约束模块流说明接口创建BDD的时机一般发生在执行系统工程活动中,例如:利益相关者需求分析、需求定义、架构设计、性能分析、测试案例开发、集成。定义和实例之间的区别涉及系统设计最基本的概念。

2024-05-25 23:26:30 3324

原创 机器学习之词袋模型

仅仅(与词在文本中出现的频率有关),类似于将所有词语装进一个袋子里,这种模型的主要目的是将文本转换为一个向量,其中向量的每个维度代表一个词,而该维度的值则表示该词在文本中出现的频率。

2024-05-21 01:37:29 1425

原创 贝叶斯分类器详解

例子:假设事件A为明天上班,事件B为明天中彩票,其中P(A)=0.5,P(B)=0.5,则明天既上班又中彩票的概率为P(A)P(B)=0.25。联合概率指的是事件同时发生的概率,例如现在A,B两个事件同时发生的概率,记为P(A,B)、P(A∩B)、P(AB)。先验概率是基于背景常识或者历史数据的统计得出的预判概率,一般只包含一个变量,例如P(A),P(B)。:,例如,事件A是由事件B引起的,则P(A|B)是条件概率,P(B|A)是后验概率。其中一般条件概率中的A事件表示结果,B事件表示原因,即。

2024-05-12 16:17:45 1153 1

原创 指针数组和数组指针

int *p[n]:根据优先级,先看[],则p是一个数组,该数组是一个int *型,因此数组的元素是指针类型,共n个元素。int (*p)[n]:根据优先级,先看括号内,可知p是一个指针,这个指针指向一个一维数组,数组长度为n。第二,指针变量可以赋值。对于语句“int*p[5]”,它是一个指针数组,该数组包含 5 个int*型的指针,如图所示。第一,“指针”是一个变量,用于保存一个地址,这个地址的数据类型在定义指针变量时确定。a 和 &a 的数据类型不同,前者是指向数组首元素的指针,后者是指向数组的指针。

2024-02-26 14:32:04 2274 1

原创 第二章 关系数据库之关系数据模型

例子。

2024-02-24 02:27:46 1280 1

原创 第一章 数据库基本概念

数据是用来记录信息的可识别的符号,是信息的具体表现形式,其表现形式包括数字、文字、图形、图像和声音等等。①数据结构 – 用于描述静态特性,即这个数据模型表示哪些数据,以什么方式表示,这些数据之间的有什么关联。,改变其映射关系,从而使逻辑模式,进而使外模式不变,所以应用程序不受影响,从而保证了物理独立性。②数据操作 – 用于描述动态特性,即采取什么操作,例如更新,查询,删除等操作。数据是信息的符号表示或载体,信息则是数据的内涵,是对数据的语义解释。例如:计算机中的一张二维表,该数据某学院学生的基本信息。

2024-02-23 17:27:32 826

原创 第一章 计算机系统概述学习笔记

1.1并发:指两个或多个事件在同一时间间隔内发生,这些事件在宏观上来看是同时发生的,但在微观上是交替发生的。并行:指两个或多个时间在同一个时刻同时发生单核CPU可以同一时刻只能执行一个程序,各个程序只能并发的执行。多核CPU同一时刻可以同时执行多个程序,多个程序可以并发的执行。两种设计结构如下图所示:描述:应用程序想要请求操作系统的服务,这个服务的处理同时涉及到进程管理、存储管理、设备管理采用大内核此时应用程序向操作系统提起服务,CPU会用户态切换为核心态,只需要进行两次变态即可。采用微内核。

2024-02-20 20:46:54 1101

原创 第1章 集合论

目录1.1 集合1.1.1 集合与元素的概念1.1.2 集合和元素的记法1.1.3 集合的表示1.1.4 集合与元素的关系1.1.5 集合与集合的关系1.1.6 几个特殊的集合1.1.6.1 空集的定义1.1.6.2 全集的定义1.1.6.3 基数1.1.6.4 m元子集1.1.6.5 幂集1.1.7 集合的运算1.1.7.1 集合的运算定义1.1.7.2 集合的运算定律1.2 无限集1.3 集合的应用集合:指定范围内的满足给定条件的所有对象聚集在一起构成的元素:对于给定集合的事物,可以判断这个特定的事物是

2024-02-18 12:00:44 1375

原创 第一章 Vue核心

英文官网: https://vuejs.org/中文官网: https://cn.vuejs.org/1 Vue的作用动态构建用户界面的渐进式 JavaScript 框架2 Vue的特点第一:采用组件化模式,提高代码复用率,且让代码更好维护第二:声明式编码,编码人员无需操作DOM,提高开发效率考虑如下例子:已知有数据persons,有容器list,要把数据装入到容器中,从而实现如图所示的效果命令式编码:也称作“指令式”,英文为:Imperative,计算机根据每一个命令去实现,

2024-02-04 23:45:32 1078

原创 ES6模块化暴露方法

前端JS的模块化主要有 CommonJS 和 ES6 Module 两种。requireimportexport今天介绍的是:ES6 Module的暴露语法。

2024-01-31 23:56:21 718

原创 第二章 Vue组件化编程

模块定义:向外提供特定功能的 js 程序,一般就是一个 js 文件为什么用:js 文件很多很复杂作用:复用 js,简化 js 的编写,提高 js 运行效率当应用中的 js 都以模块来编写的,那这个应用就是一个模块化的应用组件定义:用来实现局部功能的代码和资源的集合(html/css/js/image…)为什么用:一个界面的功能很复杂作用:复用编码,简化项目编码,提高运行效率当应用中的功能都是多组件的方式来编写的,那这个应用就是一个组件化的应用。

2024-01-30 18:38:37 761 1

原创 第二章 JavaScript 入门教程(1)

问题1:srcipt标签放head标签还是放body标签内部当JS脚本通常不会直接操作页面中的 DOM 元素(例如引入外部JS库)时,放在head标签内部当JS脚本需要等待 DOM 的加载完成才能执行时(例如操作DOM元素),需要放在body标签末尾,以保证能够正确操作已加载的 DOM 元素感觉放body比较稳定问题2:async和derfer的应用场景当JS脚本并不关心页面中的DOM元素,并且也不会产生其他脚本需要的数据,则考虑用async。

2024-01-30 00:12:30 1623 1

原创 第一章 JavaScript简介

浏览器引擎渲染引擎: 用来解析HTML与CSS, 俗称内核, 比如 chrome 浏览器的 blink , 老版本的 webkitJS 引擎(JavaScript引擎):也称为 JS 解释器。用来读取网页中的JavaScript代码, 对其处理后运行, 比如 chrome 浏览器的 V8Chrome 浏览器 => V8Firefox 浏览器 => OdinMonkeySafri 浏览器 => JSCoreIE 浏览器 => Chakra浏览器执行JavaScript。

2024-01-24 18:07:11 864

原创 如何理解蕴含式p→q

这是因为:命题环境中不需要关注前提为假的情况,必须恒真才能做演绎推理(即前提为真才能推理),为假无意义,所以p=Ø。对于p为假的情况:如果你在期末考试中没有满分,无论教授最后有没有给你A,都不能说教授违背承诺,即。p->q:q是p的必要条件。S为全集,相互的关系有:Ø⊂p⊂q⊂S 其中,Ø为任意集合的子集。p→q为“如果你在期末考试中得了满分,那么你的成绩将被评定为A”p→q为“如果你在期末考试中得了满分,那么你的成绩将被评定为A”,p→q的在集合论中表达的是p⊂q,也就p是q的子集。

2024-01-23 00:56:33 3019 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除