自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(155)
  • 收藏
  • 关注

原创 【解读—论文】基于 12 导联心电图数据的自监督表示学习

本文系统评估了自监督学习在12导联ECG数据上的应用效果,提出了一种优化的CPC架构。研究对比了SimCLR、BYOL、SwAV和CPC三种自监督方法,在PTB-XL等大规模ECG数据集上进行实验,结果表明:1)自监督预训练模型在下游任务中性能优于纯监督模型,宏AUC提升0.5-1.0%;2)CPC方法表现出最佳数据效率,仅需62%标注数据即可达到监督模型全量数据性能;3)模型对生理噪声具有显著鲁棒性,特别是在形态和节律类诊断任务中提升最明显。研究验证了自监督学习可有效缓解ECG领域标注数据稀缺问题,为临床

2025-05-28 08:47:37 702

原创 【解读—论文】引导性掩码表示学习以捕捉心电图的时空关系

摘要:本文提出ST-MEM(时空掩码心电图建模)框架,通过自监督学习解决心电图(ECG)标注数据稀缺的问题。该模型创新性地将ECG的时空结构融入预训练:1) 采用时空补丁化处理12导联信号;2) 设计导联指示模块区分不同导联;3) 使用导联共享解码器强制学习跨导联时空关联。实验表明,ST-MEM在心律失常分类任务中优于现有方法,尤其在低资源和导联受限场景下表现突出。消融实验验证了各模块的有效性,注意力可视化显示模型能有效捕捉ECG的时空特征。该方法为多变量时序数据表征学习提供了新思路。

2025-05-25 15:27:01 669

原创 【深度学习】神经网络绘图可视化工具大全

输出的是计算图。我的代码库中有使用示例(就是github中的使用示例)。输出样式如下。

2025-05-21 01:07:18 1013

原创 【深度学习】Transformer 的应用

文章摘要:本文详细探讨了Transformer模型在自然语言处理(NLP)、计算机视觉(CV)和多模态领域的应用。在NLP领域,BART、BERTSum和SG-Net等模型通过自注意力机制显著提升了机器翻译、文本摘要和阅读理解等任务的性能。在CV领域,Vision Transformer(ViT)和DETR等模型通过全局信息建模,改进了图像分类、目标检测和图像分割任务。在多模态领域,CNN-Transformer和Transformer-Transformer类方法(如M2Transformer和PureT

2025-05-20 22:11:41 1126

原创 【深度学习】目标检测算法大全

R-CNN由Ross Girshick等人在2014年提出,是首批将深度卷积神经网络引入目标检测的经典方法。它将对象检测问题分解为“候选区域生成+分类+回归”三步走流程,有效地利用了深度特征,显著提升了检测精度,但也暴露出计算效率低的问题。Fast R-CNN 由 Ross Girshick 于 2015 年提出,旨在在保持高精度的同时,进一步加速 R-CNN 系列模型的检测速度。它结合了 R-CNN 和 SPPNet 的思想,引入了。

2025-05-12 23:28:39 1232

原创 【深度学习】将本地工程上传到Colab运行的方法

1、将本地工程(压缩包)上传到一个新的colab窗口:如下图中的 2.zip,如果工程中有数据集,可以删除掉。3、cd 到 requirements.txt文件的上层文件夹。4、更新/安装requirements.txt中必要的包。5、cd 到 train.py 文件的上层文件夹。6、执行 train.py 文件。

2025-05-11 18:18:47 247

原创 【深度学习】典型的 CNN 网络

以下是 ResNet 自问世以来,社区和产业界在“残差学习”基础上所作的主要改进与衍生网络,按改进思路可分为“结构改进”“宽度/基数探索”“连接模式创新”“注意力/自适应模块”四大类。

2025-05-03 17:20:57 1243

原创 【深度学习】两种数据集格式(Dataset和ImageFolder)

它的设计使得用户可以处理各种类型的数据,包括文本、图像、音频等。类型数据集适用于多种数据格式,可以存储更复杂的数据结构,灵活性更高,但通常需要手动处理数据格式。是一个专门用于加载图像数据集的类,适用于数据集目录按类别组织的情况,能够自动处理图像和标签。,因为它本身已经实现了对图像数据的处理,并且返回一个由图像和标签组成的元组。它假设数据集目录结构是按类别组织的,每个类别的图像位于各自的子目录中。库加载的,它通常是一个字典,包含多个字段,你需要在。),每个值是该字段的数据(例如图像和标签)。

2025-05-01 00:38:58 822

原创 【深度学习—李宏毅教程笔记】各式各样的 Attention

本文详细分析了Self-Attention的各种优化改进

2025-04-20 19:43:19 1229

原创 【深度学习—李宏毅教程笔记】Transformer

本文超详解Transformer

2025-04-19 16:40:32 840

原创 【深度学习—李宏毅教程笔记】Self-attention

本文详细解读了Self‑Attention的架构,矩阵运算实现过程等。

2025-04-18 17:00:14 1198

原创 【深度学习—李宏毅教程笔记】Spatial Transformer Layer

Spatial Transformer Layer 是对cnn的改进,它使卷积操作不仅具有局部平移不变性,而且对旋转、缩放、非线性形变等其他空间变换也具有更强的鲁棒性

2025-04-17 08:00:00 472

原创 【李宏毅深度学习——分类模型的PyTorch架构】Homework 2:Phoneme Classification

本文分析并提供了一个标准的基于 PyTorch 的分类模型框架,以后遇到相关项目可套模板。

2025-04-16 17:55:10 768

原创 【深度学习—李宏毅教程笔记】机器学习任务攻略

从上面的分析可知,在明显训练时,大的 batch 就一定好吗?从上面的分析不难看出,对于普通的梯度下降优化器,可能会陷入鞍点,但如果利用了二阶信息来梯度下降,就不会陷入鞍点,即在鞍点的时候,当朝着黑塞矩阵负的特征值对应的特征向量的方向更新参数时,损失就会减小,所以可以断定牛顿法(利用二阶信息的梯度下降)可以避免陷入鞍点,但牛顿法计算黑塞矩阵特征值特性向量复杂度太大,一般改进牛顿法,使得在找到近似的负的特征值对应的特征向量的方向的情况下,计算复杂度大大小于计算黑塞矩阵的复杂度。那两种的总和时间怎么样呢?

2025-04-15 12:32:14 1160

原创 【李宏毅深度学习——回归模型的PyTorch架构】Homework 1:COVID-19 Cases Prediction (Regression)

''''''self.y = yelse:else:这段代码定义了一个自定义的 PyTorch 数据集类,继承自。这个类的目的是将输入的特征(x)和目标(y)封装成一个可以用于 PyTorch 数据加载器的对象,方便在训练和预测时进行批量处理。nn.ReLU(),nn.ReLU(),return x这段代码定义了一个简单的神经网络模型My_Model,继承自。该模型用于执行回归任务(因为最后一层输出的是一个标量),并通过来定义一个包含多层的网络结构。

2025-04-13 08:00:00 703 1

原创 【土堆 PyTorch 教程总结】PyTorch入门

土堆pytorch教程总结

2025-04-12 01:11:07 1160 3

原创 Anaconda环境管理及 pycharm、jupyter notebook 的配置

即python控制台,它可以在右侧实时显示变量的类型,数值大小等属性,非常方便。打开这个界面的方式是点击界面左侧是python图标(图中红色圈出的)。上如下选择后将安装命令复制到 Anaconda Prompt 进行安装(cpu版本),这个创建并安装好ptyorch的环境可在pycharm中使用,就可以使用了。创建虚拟环境命令为:(my_pytorch_1 为新创建的虚拟环境名)在开始菜单中打开Anaconda Prompt;在哪个环境下执行命令就会安装到哪个环境下。界面的右上角new配置环境。

2025-04-11 08:00:00 509

原创 【深度学习】通过colab将本地的数据集上传到drive

本地数据集上传到colab很慢,而且断开后就没了,因此通过colab将本地的数据集上传到drive,即使断开连接,第二次连接后挂载drive后即可直接使用数据集。将本地数据集上传到colab的临时文件夹中,由于将文件夹上传到colab非常不方便,只能上传单个文件,因此这里上传压缩包,上传后再解压缩,从而得到在临时文件中的数据集文件夹。完成后可见:断开colab连接再重新连接colab,执行下面代码挂载drive后可见上传完成的数据集。将在临时文件中的数据集文件夹移到drive中。

2025-04-06 00:04:30 327

原创 【DSP】数字滤波器设计(所有设计方式大全,含matlab代码分析)

数字滤波器的传递函数通常用表示,它是在复变量 z 平面上定义的函数。形式上,传递函数可以写成:其中和分别是滤波器输出和输入信号的 Z 变换。传递函数反映了滤波器对输入信号的频域响应,是设计和分析数字滤波器的重要工具。对于离散时间系统(或数字滤波器)而言,其系统函数(传递函数)通常表示为。当我们把复平面上的 z 变量限制在单位圆上时,便得到该系统在频域的响应函数,即频率响应:这里,是滤波器的单位脉冲响应。频率响应可以写成幅度和相位的形式:其中预期频率特性的设计方法。

2025-04-05 16:36:22 928 4

原创 【DSP】谱分析实践中的问题分析

​(FFT结果中的第一个分量,对应0 Hz)。一般从​ 开始到​(若 N 为偶数),频率从最低正频率逐渐增加到奈奎斯特频率。正频率随索引增加呈线性上升趋势。对应​ 到​ 的部分(若 N 为偶数),其频率为负,且按索引增加,频率值逐渐“上升”到接近0,即从最负的频率逐步减小绝对值。对补零后的信号,定义其离散傅里叶变换为其中由于后 2n 个样本全为 0,上式实际上只对有贡献,即。

2025-04-01 14:34:04 593

原创 【DSP案例】

我们处理的大部分数据都是实数序列。设有实数序列(n),把(n)经FFT转到频域中为X(k),然后在频域中进行处理,处理完后经IFFT变成实数序列。本案例将说明如何经IFFT后得到实数序列。按 DFT 的性质,在时间域上对序列进行位移后得到的是一个复数序列,而实际上我们有时希望位移后得到的是一个实数序列。

2025-03-26 18:10:23 891

原创 【DSP】chp—3、离散时间系统(全面详细分析,草履虫都能看懂)

拉普拉斯变换与傅里叶变换的背景首先回顾连续信号的拉普拉斯变换(),傅里叶变换实际上是拉普拉斯变换在虚轴上()的特例。这为后续讨论离散信号提供了对比基础。离散信号的积分与求和由于离散信号不连续,无法直接积分,通过对信号的抽样模型引入狄拉克δ函数,将积分与求和相结合,从而得到离散信号的 Z 变换表达式。Z变换的级数收敛条件由于 Z 变换是一个幂级数,它的收敛性不仅取决于本身,还依赖于的模长。ROC 具有“圆”或“环”的几何形状。对 LSI 系统的脉冲响应。

2025-03-25 08:00:00 1418

原创 【DSP】chp—2、离散时间信号的频域分析(专栏系统讲解DSP,超详细)

离散时间信号的频域分析是通过傅里叶变换(DFT或DTFT)将信号从时域转换到频域的过程。这使我们能够深入理解信号的频谱特性,并在此基础上进行各种信号处理操作,如滤波、压缩等。频域分析是信号处理中的一个核心工具,广泛应用于通信、音频处理、图像处理等领域。定义对于连续时间信号,能量定义为对于离散时间信号,能量为特点当 E 是有限值时,该信号称为能量信号。由于能量是有限的,其平均功率(即单位时间内的能量)通常趋于零。

2025-03-22 08:00:00 1777

原创 【机器学习chp14 — 总】生成式模型大全—扩散模型Diffusion、生成对抗网络GAN、变分自编码器VAE(草履虫都能看懂,超详细分析,易于理解,推导严谨,一文就够了)

在大多数传统任务中,神经网络被视为一个确定性的映射例如,在图像分类中,输入图像(例如尺寸为的RGB图像)经过神经网络映射到一个固定类别集合这意味着给定一个输入图像,模型输出一个类别标签。从确定性映射到概率映射:传统神经网络映射被扩展为,允许输出多样化结果。模型多样性与创造性:通过引入随机性(例如随机变量)生成不同样式的输出,从而满足如图像生成、文本生成等任务的“创造力”需求。极大似然估计与KL散度:利用极大似然原理最大化真实数据的似然,等价于最小化真实分布与模型分布间的 KL 散度。

2025-03-21 13:14:51 1106

原创 【机器学习chp14 — 4】生成式模型—扩散模型 Diffiusion model(超详细分析,易于理解,推导严谨,一文就够了)

VAE视角下的扩散模型将数据生成过程分解为多个隐变量​ 的状态转移,前向过程作为编码器,后向过程作为解码器。与VAE类似,通过构造变分下界(ELBO)对整体对数似然进行优化。数学分解与目标函数下界由重构项和多步KL散度项组成,每一步的KL项均可解析计算。参数化的后向分布通过噪声预测器实现,使得生成过程仅依赖于当前状态​ 的信息。优势与改进由于每步变化较小,简单的高斯假设足以准确描述局部变化,从而使得扩散模型在捕捉复杂数据分布上较传统VAE更具优势。

2025-03-20 19:00:00 1218

原创 【机器学习chp14 — 3】生成式模型—生成对抗网络GAN(超详细分析,易于理解,推导严谨,一文就够了)

直观解释想象有两堆“土堆”,其中一堆代表真实数据分布,另一堆代表生成数据分布。Wasserstein 距离即为将一堆“土”重新搬运成另一堆“土”所需的最小运输成本,其中运输成本通常与搬运的距离成正比。这种解释突出了 Wasserstein 距离对分布“差异”的几何度量,相较于传统的散度(如 JS 散度),在衡量不重叠或分布支持集几乎无交集的情形下能提供更平滑、有效的梯度信息。正式定义对于两个概率分布​(真实数据分布)和​(生成数据分布),Wasserstein 距离定义为:其中,

2025-03-20 12:28:56 1086 5

原创 【机器学习chp14 — 2】生成式模型—变分自编码器VAE(超详细分析,易于理解,推导严谨,一文就够了)

生成式模型的目标是学习数据的分布,从而能够生成与真实数据相似的新样本。变分自编码器(Variational Autoencoder, VAE)是其中一种重要的生成模型,它将传统自编码器的框架与概率模型和变分推断方法相结合,不仅能够重构输入数据,还能从隐变量空间中生成新的数据。与对抗生成网络(GAN)相比,VAE具有明确的概率解释和连续平滑的潜在空间,使其在一些需要不确定性估计或潜在特征表达的任务中表现突出。输入数据:从训练集中获取样本(如图像、文本等)。编码器(Encoder):将。

2025-03-19 19:37:25 1637

原创 【机器学习chp14 — 1】生成式模型概述和主要思想(超详细分析,易于理解,推导严谨,一文就够了)

在大多数传统任务中,神经网络被视为一个确定性的映射例如,在图像分类中,输入图像(例如尺寸为的RGB图像)经过神经网络映射到一个固定类别集合这意味着给定一个输入图像,模型输出一个类别标签。从确定性映射到概率映射:传统神经网络映射被扩展为,允许输出多样化结果。模型多样性与创造性:通过引入随机性(例如随机变量)生成不同样式的输出,从而满足如图像生成、文本生成等任务的“创造力”需求。极大似然估计与KL散度:利用极大似然原理最大化真实数据的似然,等价于最小化真实分布与模型分布间的 KL 散度。

2025-03-19 16:54:01 918

原创 【机器学习chp13--(下)】人工神经网络—优化算法

Batch Normalization 通过对每一层输入进行归一化,既缓解了内部协变量偏移问题,又有助于加速收敛、提高训练稳定性和一定程度上的正则化效果。其实现方式简单而有效,但在应用时也需要注意小批量大小、序列模型的特殊性以及训练与推理阶段统计量的一致性。总的来说,BN 已成为深度学习中不可或缺的一环,为构建更深更复杂的网络模型提供了有力支持。跳跃连接作为深度网络设计中的一项重要技术,主要通过提供直接的信息传递路径,解决了深层网络中梯度消失、信息衰减以及训练不稳定等问题。

2025-03-16 00:26:33 841

原创 【机器学习chp13--(上)】人工神经网络(MLP结构 + KAN结构 + 卷积神经网络)

卷积神经网络之所以在图像处理上更为优秀,主要在于它利用了图像数据的局部性和空间结构,通过局部感受野和参数共享机制大幅降低模型复杂度,并通过多层结构逐步抽象出高层次特征。同时,平移不变性和池化层的应用使得CNN对于图像中的位移、旋转以及噪声具有较好的鲁棒性。正是这些特点,使得卷积神经网络成为图像分类、目标检测、图像分割等任务中的主流模型。节点向量(Knot Vector)节点向量是一系列非递减的实数序列,记为p 是曲线的阶数(通常阶数 p+1 表示多项式的次数,如三次曲线 p=3)。

2025-03-15 13:05:19 1189

原创 【机器学习chp12代码示例】半监督学习

半监督生成模型在有标签数据上的准确率: 1.0。无标签样本上的准确率: 0.9625。有标签数据数: 199。有标签样本数量: 70。收敛于迭代次数: 6。无标记样本数: 80。

2025-03-11 10:47:57 603

原创 【机器学习chp12】半监督学习(自我训练+协同训练多视角学习+生成模型+半监督SVM+基于图的半监督算法+半监督聚类)

半监督学习的定义和基本思想半监督学习(Semi-Supervised Learning,SSL)结合了监督学习和无监督学习的特点。它的基本思想是使用少量的标注数据和大量的无标注数据进行学习。标注数据相对较贵且稀缺,而无标注数据通常可以轻松获得,因此半监督学习能够在实际应用中发挥巨大作用。监督学习:依赖大量标注数据,通过标注数据训练模型进行分类或回归任务。无监督学习:使用未标注数据进行训练,主要用于聚类或数据表示学习,不依赖标签。

2025-03-10 12:09:48 1177

原创 【机器学习chp11代码示例】聚类

此示例旨在说明k-means将产生不直观的、可能是意外的聚类的情况。在前三幅图中,输入的数据不符合一些隐含的假设,即k均值生成,因此产生了不理想的聚类。Davies-Bouldin 指数 (DBI): 0.6619715465007465。Calinski-Harabasz 指数 (CHI): 561.62775662962。Dunn 指数 (DI): 0.09880739332807607。Rand 指数 (RI): 0.8797315436241611。混淆矩阵: [[ 0 50 0]

2025-03-08 18:02:28 821

原创 【机器学习chp11】聚类(K均值+高斯混合模型+层次聚类+基于密度的聚类DBSCAN+基于图的聚类+聚类的性能评价指标)

聚类的原理与方法聚类是非监督学习中的一项核心任务,目的是将数据分成不同的簇,每个簇内部的样本相似度较高,簇间的样本差异较大。基于中心的聚类:通过计算每个簇的中心点(例如K-means聚类),然后将样本分配到最近的中心点。这种方法假设数据簇呈现出某种形式的“圆形”结构,适合处理分布比较均匀的数据。基于密度的聚类:通过识别数据点密度的区域来进行聚类,DBSCAN是其中的代表方法。密度聚类的优点在于可以识别形状较为复杂的簇,并且能够自动识别噪声点。层次聚类。

2025-03-06 22:47:09 931

原创 【机器学习chp10代码示例】降维

【代码】【机器学习chp10代码示例】降维。

2025-03-05 20:26:36 331

原创 【机器学习chp10】降维——(核化)PCA + MDS + lsomap + 拉普拉斯特征映射 + t-NSE + UMAP

数据映射给定原始数据集我们引入非线性映射将数据映射到高维(或无限维)的特征空间。核函数定义核函数为映射后的内积例如,对于径向基函数(RBF)核有数据映射:利用非线性函数将原始数据映射到高维特征空间。构造核矩阵:通过核函数构造。中心化:利用公式​, 对核矩阵进行中心化处理。特征值分解:求解,获得特征向量和特征值。数据投影:利用特征向量,将新数据点通过核函数投影到低维空间,实现降维表示。

2025-03-02 19:55:56 1271

原创 【机器学习chp9代码示例】集成学习算法大全:Bagging(Bagging+随机森林+极度随机森林)、Boosting(AdaBoost+GBDT+XGB+LightGBM+CatBoost)

对大规模数据效果好。

2025-02-28 23:32:31 594

原创 【机器学习chp7代码示例】SVM分类和回归、线性核和径向基核

【代码】【机器学习chp7代码示例】SVM分类和回归、线性核和径向基核。

2025-02-24 22:49:45 175

原创 【机器学习chp6代码示例】逻辑回归,样本不均衡时的上采样,分类模型评估方法

会执行与交叉验证相同的过程,但它返回的是每个样本的预测结果。每个样本的预测是由对应的验证集预测得到的。这个方法的主要目的是获取交叉验证的预测结果,以便我们可以进一步分析或可视化这些预测,尤其是在模型调优或模型比较时非常有用。准确率-召回率曲线是针对两分类的,本例中为3分类,所以三种类别分别绘制准确率-召回率曲线。使用生成合成样本来进行过采样补充数目少的类的样本:使用SMOTE(合成少数类过采样技术)是用来指定模型评估指标的参数。)默认是为二分类问题设计的,而此例的目标数据。参数来处理多分类情况。

2025-02-22 23:55:07 719

原创 【机器学习chp5代码示例】线性回归+岭回归+Lasso回归+LAR回归+弹性回归+胡伯Huber损失回归

本文使用的数据集是:加利福尼亚住房数据集(回归)

2025-02-22 13:20:36 322

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除