用MNIST数据集搭建简单卷积神经网络

一、MNIST数据集简介

MNIST数据集是NIST(National Institute of Standards and Technology,美国国家标准与技术研究所)数据集的一个子集,为手写数字数据库,由60000个例子组成的训练集,以及一个由10000个例子组成的测试集。对于想上尝试学习技术和模式识别方法的人来说,这是一个很好的数据库,在预处理和格式化方面花费的精力最少。

MNIST 数据集获取:http://yann.lecun.com/exdb/mnist/ 获取

二、搭建简单卷积神经网络

1.导入库文件和模块

import torch
import numpy
 
from torchvision import transforms #处理图像
from torchvision import datasets #处理数据集
from torch.utils.data import DataLoader #加载数据集
 
import torch.nn.functional as F #导入激活函数
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']#用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

补充:

import datasets是为了方便下载数据集,如MNIST、ImageNet、CIFAR10等

import transforms是pytorch中的图像预处理库,一般用Compose把多个步骤整合到一起

2.数据处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值