一、MNIST数据集简介
MNIST数据集是NIST(National Institute of Standards and Technology,美国国家标准与技术研究所)数据集的一个子集,为手写数字数据库,由60000个例子组成的训练集,以及一个由10000个例子组成的测试集。对于想上尝试学习技术和模式识别方法的人来说,这是一个很好的数据库,在预处理和格式化方面花费的精力最少。
MNIST 数据集获取:http://yann.lecun.com/exdb/mnist/ 获取
二、搭建简单卷积神经网络
1.导入库文件和模块
import torch
import numpy
from torchvision import transforms #处理图像
from torchvision import datasets #处理数据集
from torch.utils.data import DataLoader #加载数据集
import torch.nn.functional as F #导入激活函数
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']#用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
补充:
import datasets是为了方便下载数据集,如MNIST、ImageNet、CIFAR10等
import transforms是pytorch中的图像预处理库,一般用Compose把多个步骤整合到一起
2.数据处理