- 博客(24)
- 收藏
- 关注
原创 你一定要看这篇打破信息差,太牛了我靠,快看博客里的视频,发现了一款神级ai-Flowith 直接平替monus
这次连复制粘贴都省了,直接帮你做好网页,同时审美无敌,不用邀请码的画布版 Manus + Deepseek?Flowith 团队亮相揭示另一种人机未来
2025-03-07 19:07:34
1122
2
原创 《动手学PyTorch深度学习建模与应用》第三章:3.1 高级张量操作
在这一节中,我们详细介绍了PyTorch中的一些高级张量操作,包括高级索引与切片、广播与扩展、拼接与拆分、重塑与转置以及聚合操作。这些操作在构建复杂模型时非常有用,能够帮助我们更高效地处理数据,让代码更加简洁和易读。如果你对高级张量操作还有疑问,或者希望了解更多细节,欢迎在评论区留言!下一节我们将继续深入探讨自定义层与模块,敬请期待!
2025-03-05 23:21:28
785
原创 记录第一次部署了本地网页哈哈哈制作了一个德州扑克胜率展示网页(这是能播的吗),全过程不用写一行代码
第一次在本地部署网页感觉很有意思!不用写代码制作一个德州扑克胜率可视化网页,有什么问题都可以在评论区讨论哦,感觉很有意思就记录下来啦,可能比较粗糙哦。
2025-03-05 23:10:22
519
原创 全过程带你从入门到精通《动手学PyTorch深度学习建模与应用》第二章:总结回顾
通过这一章的学习,我们详细介绍了深度学习的基础概念,包括神经网络的前向传播与反向传播、激活函数、损失函数、优化算法、卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)和Transformer架构。这些内容是深度学习的核心,也是构建和训练神经网络的基础。在学习过程中,我们特别关注了容易出错的部分,并提供了一些实用的建议。希望这些内容能帮助你更好地理解和应用深度学习模型。如果你对这一章的内容还有疑问,或者希望了解更多细节,欢迎在评论区留言!
2025-03-04 21:29:44
1111
原创 全过程带你学Pytorch《动手学PyTorch深度学习建模与应用》第一章:总结回顾
深度学习是机器学习的一个分支,它通过构建多层神经网络来学习数据中的复杂模式。PyTorch是一个开源的深度学习框架,以其灵活性和易用性而受到广泛欢迎。PyTorch的核心特性包括动态计算图、自动求导机制和丰富的API。容易出错的地方动态计算图与静态计算图的区别:动态计算图允许在运行时动态修改计算图,这使得调试更加灵活,但也可能导致性能问题。相比之下,静态计算图(如TensorFlow 1.x)在运行前需要构建完整的计算图,调试相对复杂,但运行效率更高。建议。
2025-03-04 21:16:30
654
原创 DeepseekR1,kimi,Chatgpt4o,grok3腾讯元宝,通义千问等模型对比评价及推荐。
自从过年期间deepseek爆火以来,我一直主要使用的他,很直观的能感受到他的逻辑能力,和反应能力,另外他能很好的理解用户的思路,即使用户只发了很少提示词,这一点就很棒,另外他不会回答你不需要的东西,也会乱回答。他的代码能力在国内模型里应该是可以排第一的,这里指的是deepseek官网的模型70b,而非其他厂家部署的。例图不过deepseek的缺点也很明显,在使用的过程中经常会系统繁忙,如果让他分析一些紧急的任务可能直接就炸杠了。同时输出长度是有限制的。
2025-03-03 10:46:50
3450
原创 动手学PyTorch深度学习建模与应用》第二章:2.7-2.8节详解
在本章中,我们详细介绍了深度学习的基础概念,包括神经网络的前向传播与反向传播、激活函数与损失函数、优化算法、卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)和门控循环单元(GRU)。这些内容是深度学习的核心,也是构建和训练神经网络的基础。通过本章的学习,我们掌握了深度学习的基础概念和Transformer架构的核心思想。Transformer架构通过引入自注意力机制,能够高效地处理长序列数据,并在自然语言处理领域取得了巨大的成功。希望这些内容能帮助你更好地理解和应用深度学习模型。
2025-03-02 19:46:48
717
原创 一分钟了解8大AI大模型的优缺点(有图有链接)平时工作如何选择?
自从过年期间deepseek爆火以来,我一直主要使用的他,很直观的能感受到他的逻辑能力,和反应能力,另外他能很好的理解用户的思路,即使用户只发了很少提示词,这一点就很棒,另外他不会回答你不需要的东西,也会乱回答。他的代码能力在国内模型里应该是可以排第一的,这里指的是deepseek官网的模型70b,而非其他厂家部署的。例图不过deepseek的缺点也很明显,在使用的过程中经常会系统繁忙,如果让他分析一些紧急的任务可能直接就炸杠了。同时输出长度是有限制的。
2025-03-02 16:42:55
958
原创 《动手学PyTorch深度学习建模与应用》第二章:2.4-2.6节详解
通过本章的2.4到2.6节,我们详细介绍了优化算法、卷积神经网络(CNN)和循环神经网络(RNN)的基础知识。优化算法是训练神经网络的核心,CNN在图像处理任务中表现出色,而RNN及其变体(如LSTM和GRU)在处理序列数据时具有独特的优势。这些内容是深度学习的重要组成部分,掌握它们将帮助你更好地理解和应用深度学习模型。下一节我们将继续深入探讨Transformer架构的基础知识,敬请期待!
2025-03-02 00:45:37
982
原创 2.3部分补充说明全过程带你从入门到精通《动手学PyTorch深度学习建模与应用》第二章:2.1-2.3节详解
在本章的2.1到2.3节中,我们深入探讨了深度学习的基础概念,包括神经网络的基本结构、前向传播与反向传播机制,以及激活函数和损失函数的作用。这些内容是深度学习的核心,也是构建和训练神经网络的基础。通过理解这些概念,我们可以更好地设计和优化深度学习模型。如果你对这些内容还有疑问,或者希望了解更多细节,欢迎在评论区留言!下一节我们将继续深入探索深度学习的更多高级主题,敬请期待!子中,我们定义了一个简单的神经网络模型,并使用交叉熵损失函数来计算模型的损失。
2025-03-02 00:03:09
201
1
原创 全过程带你从入门到精通《动手学PyTorch深度学习建模与应用》第二章:2.1-2.3节详解,篇幅超了,缺的后面再补吧
步骤关键公式类比前向传播a=σ(W⋅x+b)做练习题损失计算计算错题数反向传播分析错误原因参数更新调整学习方法通过本节的讲解,我们详细介绍了反向传播的原理及其在PyTorch中的实现。反向传播是神经网络训练的核心机制,通过计算梯度并更新参数,模型能够不断优化自己的性能。
2025-02-28 10:15:00
2272
1
原创 《动手学PyTorch深度学习建模与应用》第1章:1.8-1.9节详解
通过前面的内容,我们已经掌握了PyTorch的基本操作和模型训练与评估的流程。接下来,我们通过一个简单的实践案例——手写数字识别(MNIST数据集)来巩固所学内容。通过本章的学习,我们掌握了PyTorch的基本操作和模型训练与评估的流程。在实践案例中,我们成功实现了手写数字识别任务,并取得了较高的准确率。希望这些内容能帮助你更好地理解和应用PyTorch进行深度学习建模。如果你对本章内容还有疑问,或者希望了解更多深度学习的高级应用,欢迎随时在评论区留言!
2025-02-28 00:03:52
1038
原创 《动手学PyTorch深度学习建模与应用》第1章:1.8-1.9节详解
在前面的内容中,我们已经对PyTorch的基本概念和操作有了初步的了解,包括张量操作、自动求导、神经网络的模块化设计,以及广播机制。这些内容都是深度学习的基础,也是我们后续构建复杂模型的基石。今天,我们继续深入第1章的最后两节:1.8节“模型训练与评估基础”和1.9节“总结与实践案例”。这一部分将帮助我们把前面的知识串联起来,真正动手训练一个模型,并评估它的性能。
2025-02-27 23:57:21
167
原创 下次更新预告
然而,从 PDF 中提取图像和表格一直是令人头疼的问题——手动操作繁琐且耗时,而传统的自动化工具又难以满足复杂需求。下周,我将发布一篇深度技术博客,带你探索如何利用多模型和前沿工具编写一个强大的 Python 脚本,轻松实现 PDF 图像和表格的提取!1. 多模型的魔法:如何结合 DeepSeek、阿里通义千问、Claude 3.5 等多模态模型,让复杂的图像和表格提取变得简单。下篇博客,我将为你揭开这一切的神秘面纱,带你开启高效办公的新篇章。5.关于这些模型的应用心得,个人主观感受的优劣,差距。
2025-02-27 14:12:21
357
原创 1.4-1.7部分内容:教你动手学Pytorch,从入门到精通:《动手学PyTorch深度学习建模与应用》第1章解读:PyTorch入门与张量操作
理解深度学习工作流的底层逻辑## 1.4 自动求导机制:为什么需要自动微分?### 知识本质解析**为什么需要自动求导?**深度学习模型的训练本质是通过梯度下降优化参数。假设一个简单的神经网络有100万个参数,手动计算每个参数的导数需要:- 编写数百万行求导代码- 每次模型结构变化都要重新推导公式- 极易出现计算错误。
2025-02-24 20:56:07
372
2
原创 全过程教你动手学Pytorch,从入门到精通:《动手学PyTorch深度学习建模与应用》第1章解读:PyTorch入门与张量操作1.4-1.7部分内容
理解深度学习工作流的底层逻辑## 1.4 自动求导机制:为什么需要自动微分?### 知识本质解析**为什么需要自动求导?**深度学习模型的训练本质是通过梯度下降优化参数。假设一个简单的神经网络有100万个参数,手动计算每个参数的导数需要:- 编写数百万行求导代码- 每次模型结构变化都要重新推导公式- 极易出现计算错误。
2025-02-24 20:50:39
353
原创 PyTorch入门实战指南:从张量操作到神经网络构建
入门实战指南:从张量操作到神经网络构建目录1.引言:为什么选择PyTorch?2.快速上手:PyTorch安装与验证3.核心概念:张量(Tensor)的魔法世界3.1 张量创建的10种姿势3.2 张量运算的隐藏技巧4.实战突破:手写一个神经网络(含代码调试)5.避坑指南:新手常见9大误区6.延伸学习:如何用PyTorch复现你的第一个AI模型?7.总结与互动痛点场景:你是否遇到过TensorFlow代码像"黑盒"一样难以调试?或者在深夜改论文时被静态计算图的报错逼疯?
2025-02-24 15:30:46
645
原创 全过程教你动手学Pytorch,从入门到精通:《动手学PyTorch深度学习建模与应用》第1章解读:PyTorch入门与张量操作
代码示例:简单的全连接神经网络```python# 定义一个简单的全连接神经网络self.fc1 = nn.Linear(10, 5) # 输入层到隐藏层self.fc2 = nn.Linear(5, 2) # 隐藏层到输出层x = F.relu(self.fc1(x)) # 使用ReLU激活函数return x# 创建网络实例print("\n神经网络结构:")print(net)# 输入一个随机张量。
2025-02-24 15:09:37
1232
2
原创 [特殊字符]《智能PDF内容提取器:重塑文档处理新体验》
"揭秘新一代PDF智能解析技术!本工具突破传统OCR限制,实现图片/表格/文本的精准分离提取,支持批量处理与智能分类。通过深度学习算法优化,在学术文献解析、商务报表处理等场景展现惊人效率,重新定义PDF内容复用标准。核心定位:跨平台智能文档解析解决方案适用人群:科研学者/数据分析师/法律从业者/学生群体技术亮点基于PyMuPDF与Camelot的混合解析引擎自适应多语言文本识别非结构化数据智能重组技术GPU加速处理架构与传统工具对比优势功能维度传统方案本工具表格识别精度。
2025-02-24 13:32:16
738
1
原创 python与环境统计学--两样本均值的差异显著性检验之z检验,t检验和对应例题代码展示(一)
python 环境统计学,两样本均值的差异显著性检验 频数直方图,z检验,t检验的介绍和例题粗解。
2022-10-08 22:34:07
4704
1
原创 关于Python的每日问题总结:文字识别,识别手稿,纸质书籍时,数据收集时所遇到的困难
原因:碰到一个数据处理问题,有120个数据实在是不想手动输入。偷懒用手机扫描,提取出对应数据,期望直接用numpy进行处理。发现问题:1.文本复制进入编译器后不能直接使用,每个数据之间有空格,某些数据连接在一起,也不能直接建立表格。分析文本内容,发现由于识图软件的问题,有几处数据有粘连,手动码空格,其余数据之间都有空格如x=('1.86 1.74 1.65' '1.66 1.74 1.35')解决思路:1.转换成字符串,再用分割split()默认情况删掉空格,处理得到每
2022-09-27 00:50:43
368
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人