【信道估计】基于QPSK编码的MVU和MMSE信道估计附Matlab代码

本文详细介绍了在无线通信中基于QPSK编码的信道估计,包括最小方差无偏估计(MVU)和最小均方误差(MMSE)方法。通过推导公式并进行仿真分析,展示了MMSE估计在考虑噪声影响后具有优于MVU的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

信道估计是无线通信系统中一项关键技术,用于估计发送端和接收端之间的信道特性。在本文中,我们将讨论基于 QPSK 编码的两种信道估计方法:最小方差无偏估计 (MVU) 和最小均方误差 (MMSE) 估计。我们将推导出它们的估计公式,并分析它们的性能。

引言

在无线通信系统中,信道通常是不完美的,会引入衰落、相移和多径等失真。信道估计旨在估计这些信道特性,以补偿失真并提高通信性能。

QPSK(正交相移键控)是一种常用的调制技术,它使用四个正交相位来表示数据。QPSK 编码的信道估计具有较好的鲁棒性和性能。

MVU 信道估计

MVU 估计是无偏估计中方差最小的估计。对于 QPSK 编码,MVU 信道估计的公式为:

 

h_MVU = (1/4) * (r_1 - j * r_2 + r_3 + j * r_4)

其中,r_1r_2r_3 和 r_4 是接收到的 QPSK 信号的四个分量。

MMSE 信道估计

MMSE 估计是一种考虑了信道噪声影响的估计。对于 QPSK 编码,MMSE 信道估计的公式为:

 

h_MMSE = (1 / (1 + σ^2 / P)) * (r_1 - j * r_2 + r_3 + j * r_4)

其中,σ^2 是噪声功率,P 是信号功率。

性能分析

MVU 估计和 MMSE 估计的性能可以通过它们的均方误差 (MSE) 来衡量。对于 QPSK 编码,MVU 估计的 MSE 为:

 

MSE_MVU = σ^2 / 2

MMSE 估计的 MSE 为:

 

MSE_MMSE = σ^2 / (1 + σ^2 / P)

从公式中可以看出,MMSE 估计的 MSE 总是小于 MVU 估计的 MSE。这是因为 MMSE 估计考虑了噪声的影响,而 MVU 估计没有。

仿真结果

为了验证理论分析,我们进行了仿真实验。在仿真中,我们使用 QPSK 编码的信号,信道为瑞利衰落信道。我们比较了 MVU 估计和 MMSE 估计的 MSE。

仿真结果表明,MMSE 估计的 MSE 明显低于 MVU 估计的 MSE。这与理论分析一致。

结论

MVU 和 MMSE 信道估计都是基于 QPSK 编码的有效信道估计方法。MMSE 估计考虑了噪声的影响,因此具有更好的性能。在实际应用中,可以根据系统要求和信道条件选择合适的信道估计方法。​

📣 部分代码

clear;clc;y=abs('abcdefghijklmn');%将字符串转换成ASCII码y1=dec2bin(y,8);   %将ASCII码转换成8位二进制数,‘char’% y2=y1-48;        %将二进制代码转换为矩阵,即将字符串转为数据,'double',或者用str2numy2=y1+0-'0';       %char to double,char,其实也是ascII码,就给char数字加0,就将char变为double矩阵了,但是ascII码值,再减去‘0’就行了x1=reshape(y2,1,[]);%将y2转为一维矩阵,上述两步为重中之重,只有转换为矩阵才能进行下面的运算a=length(x1);b=a/2;c=ceil(b);if c~=b    error('出错,请重新输入');endL=3;t=0:20;       for n=1:2:a        if x1(n)==0 && x1(n+1)==0;            d((n+1)/2)=-1/sqrt(2);            d1((n+1)/2)=-1/sqrt(2);        elseif x1(n)==0 && x1(n+1)==1;            d((n+1)/2)=-1/sqrt(2);            d1((n+1)/2)=1/sqrt(2);        elseif x1(n)==1 && x1(n+1)==0;            d((n+1)/2)=1/sqrt(2);            d1((n+1)/2)=-1/sqrt(2);        elseif x1(n)==1 && x1(n+1)==1;            d((n+1)/2)=1/sqrt(2);            d1((n+1)/2)=1/sqrt(2);        end       ends=(d+d1*1i).';for SNR=0:20sigma=L/exp(SNR/10);for u=1:100%  h1=normrnd(0,1,1,L);%  h2=normrnd(0,1,1,L);%  h=((h1+h2*1i)/sqrt(2)).';h=wgn(L,1,0,'complex');x=comsystem(s,L,h,SNR);h_estmvu=mvu(x,s,L);h_estmmse=mmse(x,s,L,sigma);var_mvu1=abs(h-h_estmvu).^2/3;var_mmse1=abs(h-h_estmmse).^2/3;var_mvu2(u)=sum(var_mvu1);var_mmse2(u)=sum(var_mmse1);enderrormvu=sum(var_mvu2);errormmse=sum(var_mmse2);var_minmvu(SNR+1) = errormvu/100; var_minmmse(SNR+1)=errormmse/100;endsemilogy(t,var_minmvu,'r-o');               %用圆圈标志点位置hold onsemilogy(t,var_minmmse,'s-');xlabel('SNRdB');ylabel('误差');legend('MVU估计','MMSE估计');

⛳️ 运行结果

🔗 参考文献

[1] 张驰,郭黎利.基于Matlab的FIR滤波器设计及FPGA实现[J].应用科技, 2006, 33(6):83-86.

[2] 许书云.FIR数字滤波器的Matlab实现[J].天津职业技术师范大学学报, 2013, 23(2):3.DOI:10.3969/j.issn.2095-0926.2013.02.010.

[3] 彭玲,刘晓忠,付杰,等.OFDM系统中基于导频的信道估计及其MATLAB仿真[J].井冈山学院学报, 2008(2期):47-49.DOI:10.3969/j.issn.1674-8085.2008.01.016.

[4] 彭玲.OFDM系统中基于导频的信道估计及其MATLAB仿真[J].井冈山学院学报, 2008.DOI:CNKI:SUN:JGSS.0.2008-01-015.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值