【GPS与高速传感器、尔曼滤波器】使用IMU + GPS数据的姿态和位置参考系统(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、IMU与GPS的特点及局限性

二、卡尔曼滤波器的应用

三、系统实现步骤

四、应用领域

五、总结

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

IMU(惯性测量单元)和GPS(全球定位系统)是两种常用的传感器技术,用于测量姿态和位置信息。IMU通过测量加速度和角速度来确定物体的姿态,而GPS则通过接收卫星信号来确定物体的位置信息。

将IMU和GPS数据结合起来可以提高定位精度和姿态测量的准确性。然而,这两种传感器技术各自存在一定的局限性,比如IMU容易积累误差,而GPS在城市峡谷等遮挡严重的地方可能无法提供准确的定位信息。

尔曼滤波器(Kalman Filter)是一种用于融合多种传感器数据的滤波算法,可以通过动态调整各传感器数据的权重来将它们整合在一起,从而获得更加准确和稳定的姿态和位置参考系统。

通过结合IMU和GPS数据,并利用尔曼滤波器来融合这些数据,可以实现更加准确的姿态和位置参考系统。这种系统在无人驾驶汽车、航空器等领域有着广泛的应用前景,可以提高自动驾驶系统的响应速度和精度,提升系统的安全性和可靠性。

在探讨使用IMU(惯性测量单元)和GPS(全球定位系统)数据的姿态和位置参考系统时,结合尔曼滤波器(这里可能指的是卡尔曼滤波器Kalman Filter,因为“尔曼滤波器”不是一个常见的术语)的数据融合技术显得尤为关键。以下是对这一研究领域的详细分析:

一、IMU与GPS的特点及局限性

IMU(惯性测量单元)

  • 优点:IMU通过测量加速度和角速度,能够提供高频的位置和姿态信息,对动态变化响应快,且不受环境影响,可在室内、地下等环境下使用。
  • 缺点:IMU数据存在累积误差,长时间使用会导致定位误差逐渐累积,影响定位精度。

GPS(全球定位系统)

  • 优点:GPS通过接收卫星信号,能够提供全球覆盖的位置信息,定位精度高,可达米级甚至厘米级,且不受天气影响。
  • 缺点:GPS信号易受遮挡影响,如在城市峡谷、密集林木等环境下信号可能无法接收或受到干扰,导致定位精度下降;此外,GPS的更新频率相对较低。

二、卡尔曼滤波器的应用

卡尔曼滤波器是一种用于融合多种传感器数据的滤波算法,通过动态调整各传感器数据的权重,将它们整合在一起,从而获得更加准确和稳定的姿态和位置参考系统。在IMU和GPS数据融合中,卡尔曼滤波器的作用主要体现在以下几个方面:

  1. 预测:利用IMU数据(如加速度和角速度)进行系统状态的预测,包括位置、速度和姿态的预测。
  2. 更新:当GPS数据可用时,利用GPS数据对IMU的预测值进行校正,更新系统状态的估计值,并调整协方差矩阵,为下一轮迭代做准备。

三、系统实现步骤

  1. 数据收集:同时获取IMU和GPS的原始数据。
  2. 初始化参数:设置卡尔曼滤波器的初始参数,包括初始状态向量、过程噪声协方差矩阵和观测噪声协方差矩阵。
  3. 预测阶段:根据IMU的测量数据(加速度和角速度),通过积分得到速度和位置的预测值,并计算预测值的协方差矩阵。
  4. 更新阶段:当GPS数据可用时,利用GPS数据对预测值进行校正,计算卡尔曼增益,并更新状态估计值和协方差矩阵。
  5. 迭代处理:不断重复预测和更新步骤,直至获得稳定的姿态和位置信息。

四、应用领域

基于IMU和GPS数据融合的姿态和位置参考系统在多个领域有着广泛的应用前景,如:

  • 无人驾驶汽车:提高自动驾驶系统的响应速度和精度,增强安全性。
  • 航空器:在复杂环境中提供更可靠的姿态和位置信息,确保飞行安全。
  • 机器人:在导航和定位中提供高精度、高稳定性的参考系统。

五、总结

通过结合IMU和GPS数据,并利用卡尔曼滤波器进行数据融合,可以构建出高精度、高稳定性的姿态和位置参考系统。这一技术在多个领域具有重要的应用价值,并随着传感器技术和数据融合算法的不断发展而不断完善。

📚2 运行结果

部分代码:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Syncronization data parameters
%  GPS
deltaGPS = 1;
stepGPS = 100;
% IMU
deltaIMU  = 79;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% GPS and IMU data
GPS_data
IMU_data
%% Angle conversion
r2d = 180/pi;
d2r = pi/180;

%% Filter selection
opt = 0;
if opt == 0
    filter =  'Extended Kalman filter'; 
end

%% Plot range
range = 100;

%% Simulation or actual experiment selection
% state = 1 simulation, state = 0  actual
state = 0;
%% System initial conditions
fIMU = 100;                       % Hz
TIMU = 1/fIMU;                    % Sample time [s].

fGPS = 1;                        % Hz
TGPS = 1/fGPS;                    % Sample time [s].

g = -9.81;                        % gravity[m/s^2].
%% Correlation time [s].
%  Rate gyros
tauR(1,1) = 626.8115;
tauR(2,1) = 6468.0515;
tauR(3,1) = 602.5784; 
% Accelerometers
tauA(1,1) = 1438.6558;
tauA(2,1) = 3807.8042;
tauA(3,1) = 1883.8307;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Weighting of the Kalman filter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Variances of the Q matrice
% AHRS - Attitude and heading reference system
varQ1(1,1) = 2;%0.0001;
varQ1(2,1) = 2;%0.0001;
varQ1(3,1) = 2;%0.01;
varQ1(4,1) = 2;%0.0001;
varQ1(5,1) = 2;%0.0001;
varQ1(6,1) = 2;%0.0001;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% INS aided GPS - Inertial Navigation system aided GPS
varQ2(1,1) = 10^3%0.00059539;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]毋建宏.基于多传感器Kalman滤波器的GPS/IMU数据融合算法设计[J].微电子学与计算机, 2005, 22(6):4.DOI:10.3969/j.issn.1000-7180.2005.06.021.

[2]毋建宏.基于多传感器Kalman滤波器的GPS/IMU数据融合算法设计[J].微电子学与计算机, 2005, 22(6):77-79.

[3]唐康华,吴美平,胡小平.MEMS-IMU/GPS组合导航中的多模态Kalman滤波器设计[J].中国惯性技术学报, 2007, 15(3):5.DOI:10.3969/j.issn.1005-6734.2007.03.012.

🌈4 Matlab代码实现

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值