【无人机路径规划】基于球形矢量的粒子群优化增强安全性的无人机路径规划(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

1. 引言

2. 背景与相关工作

3. 基于球形矢量的粒子群优化算法(SPSO)

3.1 算法原理

3.2 算法改进

3.3 成本函数设计

4. 实验与评估

4.1 实验设置

4.2 实验结果

4.3 实际应用验证

5. 结论与未来工作

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

【无人机路径规划】基于球形矢量的粒子群优化增强安全性的无人机路径规划研究

摘要
本文提出了一种名为基于球形矢量的粒子群优化(SPSO)算法,用于处理在复杂环境中受到多重威胁的无人机(UAV)路径规划问题。首先制定一种成本函数,将路径规划转化为一个优化问题,其中包含了对无人机可行和安全操作的要求和约束。然后使用SPSO通过粒子位置与无人机的速度、转角和爬升/下潜角之间的对应关系,有效搜索无人机的配置空间,找到最小化成本函数的最优路径。为了评估SPSO的性能,从真实数字高程模型图生成了八个基准场景。此外,还进行了实验以证明生成的路径对于实际无人机操作的有效性。

路径规划对于无人机执行任务并避开出现在其操作环境中的威胁至关重要。一个计划好的路径应该在应用程序定义的特定标准下是最优的。对于大多数应用,比如航拍、制图和表面检查,标准通常是最小化无人机访问位置之间的行进距离,以便减少所需的时间和燃料消耗。该标准也可以是最大化动态目标搜索中的探测概率,最小化监视和救援中的飞行时间,或者寻找多目标导航的帕累托解。此外,计划好的路径还需要满足与操作环境和无人机相关的安全和可行性约束。在文献中,已经提出了几种无人机路径规划的方法,如图搜索、单元分解、潜在场和自然启发算法。尽管基于图的算法在生成可行的飞行路径方面是有效的,但它们不适合包括与无人机机动相关的约束,因此可能导致计划路径与实际飞行路径之间存在较大误差。与此相反,单元分解方法将空间表示为相等单元格的网格,并采用启发式搜索来寻找飞行路径。A*是一种流行的算法,它使用从当前位置到其邻居和目标位置的最小成本来搜索单元空间。然而,单元分解方法的主要缺点是在搜索空间维度增加时,单元格数量呈指数级增加的可扩展能力的限制。潜在场是另一种直接搜索连续空间解决方案的方法,通过将无人机视为在受到与目标和任何障碍物相关的人造潜在场影响下移动的粒子来实现。然而,潜在场方法不考虑解决方案的最优性。

1. 引言

无人机在民用和军事领域得到了广泛的应用,其自主导航能力至关重要。然而,在许多实际应用场景中,无人机需要在复杂的环境中飞行,例如存在障碍物、强风、敌方干扰等多种威胁。在这种情况下,规划一条安全、高效的路径成为一个极具挑战性的问题。传统的路径规划算法,例如A*算法和Dijkstra算法,在处理高维空间和复杂约束条件时往往效率低下,甚至难以找到可行解。因此,需要开发更有效的算法来解决这一问题。

2. 背景与相关工作

元启发式优化算法,由于其鲁棒性和全局寻优能力,成为解决复杂路径规划问题的有力工具。粒子群优化(Particle Swarm Optimization, PSO)算法作为一种具有代表性的元启发式算法,因其简单易实现、收敛速度快等优点而被广泛应用于各种优化问题中。然而,传统的PSO算法在处理高维、非线性、多约束的优化问题时,仍然存在一些不足,例如容易陷入局部最优、收敛精度不高以及参数调整困难等。

为了克服传统PSO算法的不足,研究者们提出了多种改进方法。本文提出了一种基于球形矢量的粒子群优化算法(SPSO),用于解决复杂威胁环境下的无人机路径规划问题。

3. 基于球形矢量的粒子群优化算法(SPSO)
3.1 算法原理

SPSO算法的核心思想是将粒子的位置表示为一个球形矢量,该矢量的三个分量分别对应无人机的速度、转角和爬升/下潜角。这种编码方式避免了传统PSO算法中粒子位置可能超出搜索空间的问题,并能更自然地表示无人机的运动状态。

3.2 算法改进

SPSO算法在以下几个方面进行了改进:

  1. 球面矢量编码:采用球面矢量对粒子位置进行编码,提高了算法对无人机运动状态的表示能力。
  2. 改进的粒子速度更新机制:考虑了粒子的自身速度和个体最优位置,还考虑了群体最优位置以及无人机运动的动力学约束,提高了算法的收敛速度和精度。
  3. 动态调整参数:根据算法的迭代次数和当前搜索状态自适应地调整算法的参数,提高了算法的鲁棒性和适应性。
  4. 高效的碰撞检测机制:能够快速检测无人机路径与障碍物之间的碰撞,并及时调整粒子的运动方向,避免产生不可行解。
3.3 成本函数设计

为了将路径规划问题转化为优化问题,我们制定了一种成本函数。该函数包含了无人机可行和安全操作的要求和约束,例如最大转弯角度、最低飞行高度、安全性要求和航路距离约束等。

4. 实验与评估
4.1 实验设置

为了评估SPSO算法的性能,我们从真实的数字高程模型图中生成了八个基准场景。这些场景模拟了不同复杂程度的环境和威胁条件。

4.2 实验结果

实验结果表明,在大多数场景中,SPSO算法在路径长度、飞行时间和安全性等方面均优于其他算法,包括经典PSO、相位角编码PSO、量子行为PSO、遗传算法(GA)、人工蜂群算法(ABC)和差分进化算法(DE)。

4.3 实际应用验证

为了验证SPSO算法生成的路径在实际无人机操作中的有效性,我们进行了相关的飞行实验。实验结果表明,SPSO算法生成的路径能够引导无人机安全、高效地完成飞行任务,验证了算法的实用价值。

5. 结论与未来工作

本文提出了一种基于球形矢量的粒子群优化算法(SPSO),用于解决复杂威胁环境下的无人机路径规划问题。通过球面矢量编码、改进的粒子速度更新机制以及动态参数调整策略,SPSO算法有效地提高了路径规划的效率和精度。实验结果和实际应用验证表明,SPSO算法优于其他先进算法,具有良好的应用前景。

未来的工作将集中在进一步提高算法的鲁棒性和适应性,以及扩展算法在更复杂环境下的应用。例如,可以进一步研究算法的实时性能,以适应快速变化的飞行环境;同时,也可以考虑将SPSO算法与其他优化算法相结合,以进一步提高路径规划的效率和质量。

📚2 运行结果

部分代码:

% PSO Parameters

MaxIt=200;          % Maximum Number of Iterations

nPop=500;           % Population Size (Swarm Size)

w=1;                % Inertia Weight
wdamp=0.98;         % Inertia Weight Damping Ratio
c1=1.5;             % Personal Learning Coefficient
c2=1.5;             % Global Learning Coefficient

%% Initialization

% Create Empty Particle Structure
empty_particle.Position=[];
empty_particle.Velocity=[];
empty_particle.Cost=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];

% Initialize Global Best
GlobalBest.Cost=inf; % Minimization problem

% Create an empty Particles Matrix, each particle is a solution (searching path)
particle=repmat(empty_particle,nPop,1);

% Initialization Loop
isInit = false;
while (~isInit)
        disp("Initialising...");
   for i=1:nPop

        % Initialize Position
        particle(i).Position=CreateRandomSolution(VarSize,VarMin,VarMax);

        % Initialize Velocity
        particle(i).Velocity.r=zeros(VarSize);
        particle(i).Velocity.psi=zeros(VarSize);
        particle(i).Velocity.phi=zeros(VarSize);

        % Evaluation
        particle(i).Cost= CostFunction(SphericalToCart(particle(i).Position,model));

        % Update Personal Best
        particle(i).Best.Position=particle(i).Position;
        particle(i).Best.Cost=particle(i).Cost;

        % Update Global Best
        if particle(i).Best.Cost < GlobalBest.Cost
            GlobalBest=particle(i).Best;
            isInit = true;
        end
    end
end

% Array to Hold Best Cost Values at Each Iteration
BestCost=zeros(MaxIt,1);

%% PSO Main Loop

for it=1:MaxIt

    % Update Best Cost Ever Found
    BestCost(it)=GlobalBest.Cost;
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王龙宝,栾茵琪,徐亮,等.基于动态簇粒子群优化的无人机集群路径规划方法[J].计算机应用, 2023(12):3816-3823.DOI:10.11772/j.issn.1001-9081.2022111763.

[2]刘科,周继强,郭小和.基于改进粒子群算法的无人机路径规划研究[J].中北大学学报:自然科学版, 2013, 34(4):7.DOI:10.3969/j.issn.1673-3193.2013.04.019.

[3]徐建新,孙纬,马超.基于改进粒子群算法的无人机三维路径规划[J].电光与控制, 2023, 30(6):15-21.

[4]Manh Duong Phung, Quang Phuc Ha,Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization,Applied Soft Computing,Volume 107.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值