
人工智能
文章平均质量分 94
Shining0596
星空浩瀚无比,探索永无止境
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Datawhale AI 夏令营—科大讯飞AI大赛(大模型技术)—让大模型理解表格数据(列车信息表)
摘要:本文介绍了大模型技术方向的赛事项目,聚焦于如何让AI模型理解列车信息表数据。赛事要求基于结构化列车时刻表构建问答对数据集,并通过讯飞星辰MaaS平台进行模型微调。文章详细讲解了从数据预处理、问题生成到模型调用的完整baseline方案,重点采用模型蒸馏技术,使用编程生成问题+教师模型生成答案的方式构建高质量训练数据。同时分析了赛题难点、提升方向,并介绍了LoRA微调等关键技术概念。该项目展示了AI在智慧交通领域的应用潜力,为结构化数据理解提供了实用解决方案。原创 2025-07-26 22:55:13 · 1071 阅读 · 2 评论 -
Datawhale AI 夏令营-心理健康Agent开发学习-Task2.1
作为此次项目实践的第二个Task,我们将—— 理解大学生心理健康设计与开发的重难点!在上一节里我们大致了解了AI怎么赋能心理健康,通过一些产品了解了 心理健康Agent 大致有哪些形态,并跑通了一个“烦恼漂流瓶”的心理健康AI应用代码。相信大家已经深刻体会到AI技术应用在 大学生心理健康领域 的巨大潜力和价值。本节将深入剖析 大学生心理健康Agent 从设想到落地的重难点,并结合赛题评审标准,和大家一起探讨如何设计并开发出更优质的 ”第一道心理支持防线”~原创 2025-07-24 19:48:03 · 680 阅读 · 0 评论 -
Datawhale AI 夏令营—科大讯飞AI大赛(大模型技术)—让AI理解列车排期表(1)
本文介绍了基于星辰MaaS平台微调Qwen3-8B模型的过程,重点解决列车信息查询任务。分四步:报名赛事、下载数据集、执行微调训练、发布服务。文章对比了不同规模大语言模型的差异,解释了微调的必要性:通过专业数据集(如QA对)让预训练模型适应特定场景。进阶部分推荐使用LoRA方法进行参数高效微调,既能保持模型性能又降低资源消耗。全文强调先实践后理论的理念,帮助开发者快速构建专业领域的大模型应用系统。原创 2025-07-23 00:20:10 · 932 阅读 · 0 评论 -
Datawhale AI 夏令营-心理健康Agent开发学习-Task1
本文介绍了Datawhale 2025 AI夏令营;大学生心理健康Agent开发;项目的背景与目标。针对大学生普遍存在的抑郁、焦虑等心理问题,项目旨在利用AI技术开发24小时在线的心理健康助手,提供即时响应、情绪安抚和专业资源推荐。文章详细展示了开发流程:1)通过魔搭Notebook搭建开发环境;2)克隆项目代码;3)获取API密钥;4)运行;烦恼记忆销毁"应用demo。该项目鼓励开发者聚焦具体心理痛点(如考前焦虑),结合NLP、机器学习等技术,打造个性化心理原创 2025-07-22 23:30:53 · 943 阅读 · 1 评论 -
科大讯飞AI大赛(大模型技术方向)基于带货视频评论的用户洞察挑战赛
【摘要】比赛聚焦直播电商场景,要求参赛者基于85条带货视频及6477条评论数据,完成商品识别、情感分析和评论聚类三大任务。任务一需精准识别推广商品(XfaiyxSmartTranslator或XfaiyxSmartRecorder);任务二需对评论进行情感分类(5类)及场景/疑问/建议识别;任务三需按5个维度对相关评论聚类(每维度5-8类)并提炼主题词。评估采用精确匹配(100分)、加权F1值(100分)和轮廓系数(100分)。参赛者可使用星火大模型或开源模型,组委会提供API资源。基线方案采用TF-IDF原创 2025-07-13 19:05:38 · 541 阅读 · 0 评论 -
卷积神经网络
介绍深度学习相关内容,基于CNN介绍CNN结构,优化器,激活函数,损失函数原创 2024-06-11 23:30:17 · 2056 阅读 · 13 评论 -
动手学深度学习(一)深度学习介绍2
机器学习研究计算机系统如何利用经验(通常是数据)来提高特定任务的性能。它结合了统计学、数据挖掘和优化的思想。通常,它是被用作实现人工智能解决方案的一种手段。表示学习作为机器学习的一类,其研究的重点是如何自动找到合适的数据表示方式。深度学习是通过学习多层次的转换来进行的多层次的表示学习。深度学习不仅取代了传统机器学习的浅层模型,而且取代了劳动密集型的特征工程。最近在深度学习方面取得的许多进展,大都是由廉价传感器和互联网规模应用所产生的大量数据,以及(通过GPU)算力的突破来触发的。原创 2024-01-29 22:59:25 · 1789 阅读 · 3 评论 -
动手学深度学习(一)深度学习介绍1
时至今日,人们常用的计算机程序几乎都是软件开发人员从零编写的。比如,现在开发人员要编写一个程序来管理网上商城。经过思考,开发人员可能提出如下一个解决方案: 首先,用户通过Web浏览器(或移动应用程序)与应用程序进行交互;紧接着,应用程序与数据库引擎进行交互,以保存交易历史记录并跟踪每个用户的动态;其中,这个应用程序的核心——“业务逻辑”,详细说明了应用程序在各种情况下进行的操作。为了完善业务逻辑,开发人员必须细致地考虑应用程序所有可能遇到的边界情况,并为这些边界情况设计合适的规则。原创 2024-01-29 00:31:05 · 1972 阅读 · 0 评论 -
Machine Learning学习(一)Overview of machine learning机器学习概述
欢迎来到机器学习专业!您将加入数百万其他人的行列,他们参加了这门课程或最初的课程,这导致了Coursera的成立,并帮助了数百万其他学习者,像您一样,看看令人兴奋的机器学习世界!原创 2022-10-27 23:08:14 · 651 阅读 · 0 评论