1. 需求说明
某公司人事工作人员为了对来聘人员信息进行分析,以聘用适合计算机岗位的人员,调用了计算机岗位来聘人员信息表(hr_job.csv),其部分数据如表1所示。数据包括来聘人员的编号、性别、相关经验、受教育水平和换工作的次数等信息。
表1 来聘人员信息表部分数据
应聘人员ID | 性别 | 相关经验 | 教育水平 | 工作次数 |
11561 | 无 | 大学 | 5 | |
33241 | 无 | 大学 | 0 | |
21651 | 有 | 大学 | 11 | |
28806 | 男 | 有 | 高中 | 5 |
402 | 男 | 有 | 大学 | 13 |
2. 作业要求
经观察发现,数据存在缺失值等异常数据,因此需要对数据进行预处理,其主要步骤如下。请根据操作步骤通过Pandas函数进行实现,并返回运行结果截图
(1)读取来聘人员信息数据。
(2)将分类数据中的缺失值填补为“未知”,将数值型缺失值填补为其对应特征的均值。
(3)对所有的分类数据进行哑变量处理。