TriTransNet: RGB-D Salient Object Detection with a Triplet Transformer Embedding Network
TritranSnet:基于三重Transformer 嵌入网络的RGB-D显著目标检测
ACM MM 2021
1 Motivation
1. U-Net框架在显著目标检测广泛应用,连续的卷积和池操作产生了相互补充的多层次特征。
2. CNN的U-NET框架对图像进行从低层到高层的编码,然后解码回全空间分辨率。从高级到低级逐渐聚合特征时,性能往往很快饱和。 换句话说,高级特性对性能的贡献更大。
2 Solution
提出了一个三重transformer嵌入模块,并将其嵌入到基于CNN的U-NET框架中,以增强特征表示。 它由三个权重共享的标准transformer编码器组成,从多级特征中学习公共信息。
在提出的