TriTransNet: RGB-D Salient Object Detection with a Triplet Transformer Embedding Network

TriTransNet: RGB-D Salient Object Detection with a Triplet Transformer Embedding Network

TritranSnet:基于三重Transformer 嵌入网络的RGB-D显著目标检测 

ACM MM 2021


1 Motivation

1. U-Net框架在显著目标检测广泛应用,连续的卷积和池操作产生了相互补充的多层次特征。

2. CNN的U-NET框架对图像进行从低层到高层的编码,然后解码回全空间分辨率。从高级到低级逐渐聚合特征时,性能往往很快饱和。 换句话说,高级特性对性能的贡献更大。


2 Solution

提出了一个三重transformer嵌入模块,并将其嵌入到基于CNNU-NET框架中,以增强特征表示。 它由三个权重共享的标准transformer编码器组成,从多级特征中学习公共信息。 

在提出的

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值