
人工智能
人工智能
仗剑_走天涯
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
生成对抗网络(GAN)代码实战
本文介绍了生成对抗网络(GAN)在MNIST手写数字生成中的应用。GAN通过生成器和判别器的对抗博弈实现数据生成,其中生成器将64维噪声映射为784维图像,判别器则区分真假样本。训练过程采用交替优化策略,使用二元交叉熵损失函数和Adam优化器。原创 2025-07-29 21:12:29 · 445 阅读 · 0 评论 -
LangChain RAG 实战
本文介绍了一个基于文档的问答系统实现方案。首先将多个txt文档进行分割处理,通过通义千问的Embedding模型将文档向量化存储到Chroma数据库中。系统采用多模块设计:文档加载分割模块、向量存储模块、检索模块和对话处理模块。通过RunnablePassthrough实现问题与上下文的拼接,使用ChatTongyi模型作为问答核心,并设计了基于会话ID的历史消息存储机制。该系统支持连续问答,能够根据历史对话上下文进行智能回复,实现了基础的文档问答功能。原创 2025-07-10 16:27:44 · 407 阅读 · 0 评论 -
基于pytorch.nn模块实现softmax回归模型
本文介绍了基于B站李沐《动手学深度学习》课程的Fashion-MNIST分类实践笔记。主要内容包括:1) 数据加载与预处理函数实现,使用torchvision加载Fashion-MNIST数据集并支持图像尺寸调整;2) 可视化工具函数开发,包含图像网格显示和标签转换功能;3) 构建简单的全连接神经网络模型,采用正态分布初始化权重;4) 训练流程实现,包含准确率计算、损失函数定义(交叉熵)和SGD优化器使用;5) 完整的模型训练与评估过程,包含10个epoch的训练和测试集验证。原创 2025-07-09 15:10:52 · 247 阅读 · 0 评论 -
从0实现softmax回归模型
本笔记介绍了基于李沐《动手学深度学习》课程的Fashion-MNIST分类任务实现。包含数据加载、可视化工具函数(如show_images)、模型评估方法(evaluate_accuracy)以及训练流程(train_epoch_ch3)。重点展示了从零实现的多分类神经网络:使用Softmax激活函数、交叉熵损失和自定义SGD优化器。代码包含完整的训练循环(10个epoch)和预测可视化功能,准确率评估可达80%以上。所有实现均采用PyTorch框架,包含详细的函数注释和参数说明,适合深度学习初学者参考学习原创 2025-07-09 15:08:09 · 108 阅读 · 0 评论 -
基于pytorch.nn模块实现线性模型
本笔记基于李沐AI系列课程,实现了一个完整的线性回归模型。从数据生成(使用torch.normal模拟2维特征和标签)、模型定义(Sequential容器+Linear层)到训练过程(SGD优化器+MSELoss),详细展示了PyTorch实现流程。通过3轮训练,模型参数(w=[1.9998,-3.4003],b=4.2002)接近真实值(w=[2,-3.4],b=4.2),最终损失降至0.0001。代码包含数据加载器(DataLoader)的实现、参数初始化技巧以及训练循环的完整逻辑。原创 2025-07-09 11:58:10 · 276 阅读 · 0 评论 -
从0实现线性回归模型
本文介绍了基于B站李沐《动手学深度学习》课程的自定义神经网络实现方法。通过PyTorch框架,从零构建了一个单层线性回归模型,包括自定义的模型结构、均方损失函数和随机梯度下降优化器。实验使用合成数据验证模型效果,经过3轮训练后损失降至0.00005,学习到的参数(w=[2.0003,-3.3994],b=4.1998)接近真实值(w=[2,-3.4],b=4.2),证明了实现的有效性。代码展示了深度学习基础组件的底层实现原理,包括前向传播、反向传播和参数更新过程。原创 2025-07-09 11:51:13 · 157 阅读 · 0 评论 -
Java训练手写数字识别模型
用Java训练模型原创 2024-12-24 11:54:14 · 480 阅读 · 0 评论