数据读写
polars数据读写与pandas类似
存储 df.write_csv(“docs/data/output.csv”)
读取 df_csv = pl.read_csv(“docs/data/output.csv”)
import polars as pl
from datetime import datetime
df = pl.DataFrame(
{
"integer": [1, 2, 3],
"date": [
datetime(2025, 1, 1),
datetime(2025, 1, 2),
datetime(2025, 1, 3),
],
"float": [4.0, 5.0, 6.0],
"string": ["a", "b", "c"],
}
)
df
shape: (3, 4)
integer | date | float | string |
---|---|---|---|
i64 | datetime[μs] | f64 | str |
1 | 2025-01-01 00:00:00 | 4.0 | "a" |
2 | 2025-01-02 00:00:00 | 5.0 | "b" |
3 | 2025-01-03 00:00:00 | 6.0 | "c" |
Expressions
polars中最核心的部分Expressions。Espressions提供了一个可以模块结构,在该结构内,你可以使用并不断叠加简单的concepts(另外一个核心的概念),最终实现复杂的查询。
在polars中,主要由以下四个基本的模块结构:
-
select
-
filter
-
group_by
-
with_columns
-
select
为了选择某列,首先需求定义对应的数据集dataframe,其次要明确需要的列
# col('*')表示选择所有列, 与pl.all()相同
print(df.select(pl.col("*")))
print(df.select(pl.all()))
# 选择特定列
print(df.select(pl.col('float','date'