polars自学—官方文档:https://docs.pola.rs/user-guide/getting-started/

数据读写

polars数据读写与pandas类似

存储 df.write_csv(“docs/data/output.csv”)

读取 df_csv = pl.read_csv(“docs/data/output.csv”)

import polars as pl
from datetime import datetime

df = pl.DataFrame(
    {
   
   
        "integer": [1, 2, 3],
        "date": [
            datetime(2025, 1, 1),
            datetime(2025, 1, 2),
            datetime(2025, 1, 3),
        ],
        "float": [4.0, 5.0, 6.0],
        "string": ["a", "b", "c"],
    }
)

df
shape: (3, 4)
integer date float string
i64 datetime[μs] f64 str
1 2025-01-01 00:00:00 4.0 "a"
2 2025-01-02 00:00:00 5.0 "b"
3 2025-01-03 00:00:00 6.0 "c"

Expressions

polars中最核心的部分Expressions。Espressions提供了一个可以模块结构,在该结构内,你可以使用并不断叠加简单的concepts(另外一个核心的概念),最终实现复杂的查询。
在polars中,主要由以下四个基本的模块结构:

  • select

  • filter

  • group_by

  • with_columns

  • select
    为了选择某列,首先需求定义对应的数据集dataframe,其次要明确需要的列

# col('*')表示选择所有列, 与pl.all()相同
print(df.select(pl.col("*")))

print(df.select(pl.all()))

# 选择特定列
print(df.select(pl.col('float','date'
### 比较Claude和GPT两个AI模型 #### 性能与规模 GPT-4被描述为一个拥有1.8万亿参数的专家混合(MoE)模型,这表明其在处理复杂任务时具有极高的灵活性和效率[^3]。相比之下,Claude由Anthropic公司开发,虽然具体参数量未完全公开,但它以其高效的推理能力和较低的成本著称[^4]。 #### 训练数据与能力范围 GPT系列模型通过大量互联网文本进行训练,能够广泛应用于多种自然语言处理任务,如对话生成、代码编写、翻译等[^1]。而Claude则特别强调安全性与可控性,在敏感话题处理上表现更为谨慎,适合需要高度隐私保护的应用场景。 #### 用户体验与定制化服务 对于用户体验而言,两者都提供了强大的API接口支持开发者集成到各自的产品中去。不过,Claude更注重于提供简单易用且灵活调整参数选项给用户以便更好地适应特定需求;与此同时,GPT也不断优化其提示工程技术(prompt engineering),使得即使是非技术人员也能轻松利用这些先进功能来完成工作目标[^2]。 ```python import openai from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT # Example of using GPT API openai.api_key = 'your_openai_api_key' response_gpt = openai.Completion.create(engine="text-davinci-003", prompt="Tell me a joke.", max_tokens=50) print(response_gpt.choices[0].text.strip()) # Example of using Claude API anthropic = Anthropic(api_key='your_claude_api_key') completion_claude = anthropic.completions.create( model="claude-v1", max_tokens_to_sample=30, temperature=0.7, prompt=f"{HUMAN_PROMPT} Tell me an interesting fact.{AI_PROMPT}", ) print(completion_claude.completion.strip()) ``` #### 成本效益分析 当考虑成本因素时,Claude通常被认为是一个更具性价比的选择,因为它能够在保持高性能的同时减少计算资源消耗从而降低运营费用。然而,如果项目预算充足并且追求极致效果的话,则可能倾向于选用具备更大规模参数以及更强泛化能力的GPT版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值